
Introduction to SQL for Evergreen
administrators

i

Introduction to SQL for Evergreen administrators

Introduction to SQL for Evergreen
administrators

ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

0.9 February 2010 DS

Introduction to SQL for Evergreen
administrators

iii

Contents

1 Preface 1

2 Part 1: Introduction to SQL Databases 1

2.1 Learning objectives . 1

2.2 Introduction . 1

2.3 Tables . 1

2.4 Schemas . 2

2.5 Columns . 3

2.6 Constraints . 4

2.6.1 Prevent NULL values . 4

2.6.2 Primary key . 4

2.6.3 Foreign keys . 4

2.6.4 Check constraints . 5

2.7 Deconstructing a table definition statement . 5

2.8 Displaying a table definition using psql . 5

3 Part 2: Basic SQL queries 6

3.1 Learning objectives . 6

3.2 The SELECT statement . 6

3.3 Selecting particular columns from a table . 7

3.4 Sorting results with the ORDER BY clause . 7

3.5 Filtering results with the WHERE clause . 7

3.5.1 Comparison operators . 8

Comparing two scalar values . 8

3.6 NULL values . 9

3.7 Text delimiter: ’ . 9

3.8 Grouping and eliminating results with the GROUP BY and HAVING clauses 10

3.9 Eliminating duplicate results with the DISTINCT keyword . 12

3.10 Paging through results with the LIMIT and OFFSET clauses . 12

4 Part 3: Advanced SQL queries 13

4.1 Learning objectives . 13

4.2 Transforming column values with functions . 13

4.2.1 Scalar functions . 13

4.2.2 Aggregate functions . 14

4.3 Sub-selects . 15

4.4 Joins . 15

4.4.1 Inner joins . 15

Introduction to SQL for Evergreen
administrators

iv

4.4.2 Aliases . 16

4.4.3 Outer joins . 17

4.4.4 Self joins . 18

4.5 Set operations . 18

4.5.1 Union . 19

4.5.2 Intersection . 19

4.5.3 Difference . 19

4.6 Views . 20

4.7 Inheritance . 21

5 Part 4: Understanding query performance with EXPLAIN 21

6 Part 5: Inserting, updating, and deleting data 23

6.1 Inserting data . 23

6.2 Inserting data using a SELECT statement . 24

6.3 Deleting rows . 24

6.4 Updating rows . 25

7 Part 6: Query requests 25

7.1 Monthly circulation stats by collection code / library . 25

7.2 Monthly circulation stats by borrower stat / library . 25

7.3 Monthly intralibrary loan stats by library . 26

7.4 Monthly borrowers added by profile (adult, child, etc) / library . 26

7.5 Borrower count by profile (adult, child, etc) / library . 26

7.6 Monthly items added by collection / library . 26

7.7 Hold purchase alert by library . 27

7.8 Update borrower records with a different home library . 27

8 License 28

Introduction to SQL for Evergreen
administrators

1 / 28

1 Preface

This tutorial is intended primarily for people working with Evergreen who want to dig into the database that powers Evergreen,
and who have little familiarity with SQL or the PostgreSQL database in particular. If you are already comfortable with SQL, this
tutorial will help point you to the implementation quirks and features of PostgreSQL. If you are already familiar with both SQL
and PostgreSQL, this tutorial will help you navigate the Evergreen schema.

2 Part 1: Introduction to SQL Databases

2.1 Learning objectives

• Understand how tables organize data into columns and rows

• Understand how schemas organize tables and other database objects

• Understand the properties of the most common data types used in Evergreen

• Understand table constraints, including unique constraints, referential constraints, NULL constraints, and check constraints

• Display a table definition using the psql command line tool

2.2 Introduction

Over time, the SQL database has become the standard method of storing, retrieving, and processing raw data for applications.
Ranging from embedded databases such as SQLite and Apache Derby, to enterprise databases such as Oracle and IBM DB2,
any SQL database offers basic advantages to application developers such as standard interfaces (Structured Query Language
(SQL), Java Database Connectivity (JDBC), Open Database Connectivity (ODBC), Perl Database Independent Interface (DBI)),
a standard conceptual model of data (tables, fields, relationships, constraints, etc), performance in storing and retrieving data,
concurrent access, etc.

Evergreen is built on PostgreSQL, an open source SQL database that began as POSTGRES at the University of California at
Berkeley in 1986 as a research project led by Professor Michael Stonebraker. A SQL interface was added to a fork of the original
POSTGRES Berkelely code in 1994, and in 1996 the project was renamed PostgreSQL.

2.3 Tables

The table is the cornerstone of a SQL database. Conceptually, a database table is similar to a single sheet in a spreadsheet: every
table has one or more columns, with each row in the table containing values for each column. Each column in a table defines an
attribute corresponding to a particular data type.

We’ll insert a row into a table, then display the resulting contents. Don’t worry if the INSERT statement is completely unfamiliar,
we’ll talk more about the syntax of the insert statement later.

evergreen=# INSERT INTO actor.usr_note (usr, creator, pub, title, value)
VALUES (1, 1, TRUE, ’Who is this guy?’, ’He’’s the administrator!’);

evergreen=# select id, usr, creator, pub, title, value from actor.usr_note;
id | usr | creator | pub | title | value

----+-----+---------+-----+------------------+-------------------------
1 | 1 | 1 | t | Who is this guy? | He’s the administrator!

(1 rows)

PostgreSQL supports table inheritance, which lets you define tables that inherit the column definitions of a given parent table.
A search of the data in the parent table includes the data in the child tables. Evergreen uses table inheritance: for example,
the action.circulation table is a child of the money.billable_xact table, and the money.*_payment tables all
inherit from the money.payment parent table.

Introduction to SQL for Evergreen
administrators

2 / 28

2.4 Schemas

PostgreSQL, like most SQL databases, supports the use of schema names to group collections of tables and other database objects
together. You might think of schemas as namespaces if you’re a programmer; or you might think of the schema / table / column
relationship like the area code / exchange / local number structure of a telephone number.

Table 1: Examples: database object names

Full name Schema name Table name Field name
actor.usr_note.title actor usr_note title
biblio.record_entry.marcbiblio record_entry marc

The default schema name in PostgreSQL is public, so if you do not specify a schema name when creating or accessing a
database object, PostgreSQL will use the public schema. As a result, you might not find the object that you’re looking for if
you don’t use the appropriate schema.

evergreen=# CREATE TABLE foobar (foo TEXT, bar TEXT);
CREATE TABLE
evergreen=# \d foobar

Table "public.foobar"
Column | Type | Modifiers

--------+------+-----------
foo | text |
bar | text |

evergreen=# SELECT * FROM usr_note;
ERROR: relation "usr_note" does not exist
LINE 1: SELECT * FROM usr_note;

^

Evergreen uses schemas to organize all of its tables with mostly intuitive, if short, schema names. Here’s the current (as of
2010-01-03) list of schemas used by Evergreen:

Table 2: Evergreen schema names

Schema name Description
acq Acquisitions
action Circulation actions
action_trigger Event mechanisms
actor Evergreen users and organization units
asset Call numbers and copies
auditor Track history of changes to selected tables
authority Authority records
biblio Bibliographic records
booking Resource bookings
config Evergreen configurable options
container Buckets for records, call numbers, copies,

and users
extend_reporter Extra views for report definitions
metabib Metadata about bibliographic records
money Fines and bills
offline Offline transactions
permission User permissions
query Stored SQL statements

Introduction to SQL for Evergreen
administrators

3 / 28

Table 2: (continued)

Schema name Description
reporter Report definitions
search Search functions
serial Serial MFHD records
stats Convenient views of circulation and asset

statistics
vandelay MARC batch importer and exporter

Note
The term schema has two meanings in the world of SQL databases. We have discussed the schema as a conceptual grouping
of tables and other database objects within a given namespace; for example, "the actor schema contains the tables and
functions related to users and organizational units". Another common usage of schema is to refer to the entire data model for
a given database; for example, "the Evergreen database schema".

2.5 Columns

Each column definition consists of:

• a data type

• (optionally) a default value to be used whenever a row is inserted that does not contain a specific value

• (optionally) one or more constraints on the values beyond data type

Although PostgreSQL supports dozens of data types, Evergreen makes our life easier by only using a handful.

Table 3: PostgreSQL data types used by Evergreen

Type name Description Limits
INTEGER Medium integer -2147483648 to +2147483647
BIGINT Large integer -9223372036854775808 to 9223372036854775807
SERIAL Sequential integer 1 to 2147483647
BIGSERIAL Large sequential

integer
1 to 9223372036854775807

TEXT Variable length
character data

Unlimited length

BOOL Boolean TRUE or FALSE
TIMESTAMP
WITH TIME
ZONE

Timestamp 4713 BC to 294276 AD

TIME Time Expressed in HH:MM:SS
NUMERIC(precision,
scale)

Decimal Up to 1000 digits of precision. In Evergreen mostly used
for money values, with a precision of 6 and a scale of 2
(####.##).

Full details about these data types are available from the data types section of the PostgreSQL manual.

http://www.postgresql.org/docs/8.4/static/datatype.html

Introduction to SQL for Evergreen
administrators

4 / 28

2.6 Constraints

2.6.1 Prevent NULL values

A column definition may include the constraint NOT NULL to prevent NULL values. In PostgreSQL, a NULL value is not the
equivalent of zero or false or an empty string; it is an explicit non-value with special properties. We’ll talk more about how to
work with NULL values when we get to queries.

2.6.2 Primary key

Every table can have at most one primary key. A primary key consists of one or more columns which together uniquely identify
each row in a table. If you attempt to insert a row into a table that would create a duplicate or NULL primary key entry, the
database rejects the row and returns an error.

Natural primary keys are drawn from the intrinsic properties of the data being modelled. For example, some potential natural
primary keys for a table that contains people would be:

Table 4: Example: Some potential natural primary keys for a table of
people

Natural key Pros Cons
First name, last
name, address

No two people with the same name
would ever live at the same address,
right?

Lots of columns force data
duplication in referencing tables

SSN or driver’s
license

These are guaranteed to be unique Lots of people don’t have an SSN or a
driver’s license

To avoid problems with natural keys, many applications instead define surrogate primary keys. A surrogate primary keys is a
column with an autoincrementing integer value added to a table definition that ensures uniqueness.

Evergreen uses surrogate keys (a column named id with a SERIAL data type) for most of its tables.

2.6.3 Foreign keys

Every table can contain zero or more foreign keys: one or more columns that refer to the primary key of another table.

For example, let’s consider Evergreen’s modelling of the basic relationship between copies, call numbers, and bibliographic
records. Bibliographic records contained in the biblio.record_entry table can have call numbers attached to them. Call
numbers are contained in the asset.call_number table, and they can have copies attached to them. Copies are contained in
the asset.copy table.

Table 5: Example: Evergreen’s copy / call number / bibliographic record
relationships

Table Primary key Column with a foreign
key

Points to

asset.copy asset.copy.id asset.copy.call_number asset.call_number.id
asset.call_number asset.call_number.id asset.call_number.record biblio.record_entry.id
biblio.record_entry biblio.record_entry.id

Introduction to SQL for Evergreen
administrators

5 / 28

2.6.4 Check constraints

PostgreSQL enables you to define rules to ensure that the value to be inserted or updated meets certain conditions. For example,
you can ensure that an incoming integer value is within a specific range, or that a ZIP code matches a particular pattern.

2.7 Deconstructing a table definition statement

The actor.org_address table is a simple table in the Evergreen schema that we can use as a concrete example of many of
the properties of databases that we have discussed so far.

CREATE TABLE actor.org_address (
id SERIAL PRIMARY KEY, -- v1
valid BOOL NOT NULL DEFAULT TRUE, -- v2
address_type TEXT NOT NULL DEFAULT ’MAILING’, -- v3
org_unit INT NOT NULL REFERENCES actor.org_unit (id) -- v4

DEFERRABLE INITIALLY DEFERRED,
street1 TEXT NOT NULL,
street2 TEXT, -- v5
city TEXT NOT NULL,
county TEXT,
state TEXT NOT NULL,
country TEXT NOT NULL,
post_code TEXT NOT NULL

);

v1 The column named id is defined with a special data type of SERIAL; if given no value when a row is inserted into a
table, the database automatically generates the next sequential integer value for the column. SERIAL is a popular data
type for a primary key because it is guaranteed to be unique - and indeed, the constraint for this column identifies it as the
PRIMARY KEY.v2 The data type BOOL defines a boolean value: TRUE or FALSE are the only acceptable values for the column. The
constraint NOT NULL instructs the database to prevent the column from ever containing a NULL value. The column
property DEFAULT TRUE instructs the database to automatically set the value of the column to TRUE if no value is
provided.v3 The data type TEXT defines a text column of practically unlimited length. As with the previous column, there is a NOT
NULL constraint, and a default value of ’MAILING’ will result if no other value is supplied.v4 The REFERENCES actor.org_unit (id) clause indicates that this column has a foreign key relationship to the
actor.org_unit table, and that the value of this column in every row in this table must have a corresponding value
in the id column in the referenced table (actor.org_unit).v5 The column named street2 demonstrates that not all columns have constraints beyond data type. In this case, the
column is allowed to be NULL or to contain a TEXT value.

2.8 Displaying a table definition using psql

The psql command-line interface is the preferred method for accessing PostgreSQL databases. It offers features like tab-
completion, readline support for recalling previous commands, flexible input and output formats, and is accessible via a standard
SSH session.

If you press the Tab key once after typing one or more characters of the database object name, psql automatically completes
the name if there are no other matches. If there are other matches for your current input, nothing happens until you press the Tab
key a second time, at which point psql displays all of the matches for your current input.

To display the definition of a database object such as a table, issue the command \d _object-name_. For example, to display
the definition of the actor.usr_note table:

Introduction to SQL for Evergreen
administrators

6 / 28

$ psql evergreen # v1
psql (8.4.1)
Type "help" for help.

evergreen=# \d actor.usr_note v2
Table "actor.usr_note"

Column | Type | Modifiers
-------------+--------------------------+--- ←↩

id | bigint | not null default nextval(’actor.usr_note_id_seq ←↩
’::regclass)

usr | bigint | not null
creator | bigint | not null
create_date | timestamp with time zone | default now()
pub | boolean | not null default false
title | text | not null
value | text | not null

Indexes:
"usr_note_pkey" PRIMARY KEY, btree (id)
"actor_usr_note_creator_idx" btree (creator)
"actor_usr_note_usr_idx" btree (usr)

Foreign-key constraints:
"usr_note_creator_fkey" FOREIGN KEY (creator) REFERENCES actor.usr(id) ON DELETE ←↩

CASCADE DEFERRABLE INITIALLY DEFERRED
"usr_note_usr_fkey" FOREIGN KEY (usr) REFERENCES actor.usr(id) ON DELETE CASCADE ←↩

DEFERRABLE INITIALLY DEFERRED

evergreen=# \q v3
$

v1 This is the most basic connection to a PostgreSQL database. You can use a number of other flags to specify user name,
hostname, port, and other options.v2 The \d command displays the definition of a database object.v3 The \q command quits the psql session and returns you to the shell prompt.

3 Part 2: Basic SQL queries

3.1 Learning objectives

• Understand how to select specific columns from one table

• Understand how to filter results with the WHERE clause

• Understand how to specify the order of results using the ORDER BY clause

• Understand how to group and eliminate results with the GROUP BY and HAVING clauses

• Understand how to restrict the number of results using the LIMIT clause

3.2 The SELECT statement

The SELECT statement is the basic tool for retrieving information from a database. The syntax for most SELECT statements is:

Introduction to SQL for Evergreen
administrators

7 / 28

SELECT [columns(s)]
FROM [table(s)]
[WHERE condition(s)]
[GROUP BY columns(s)]
[HAVING grouping-condition(s)]
[ORDER BY column(s)]
[LIMIT maximum-results]
[OFFSET start-at-result-#]

;

For example, to select all of the columns for each row in the actor.usr_address table, issue the following query:

SELECT *
FROM actor.usr_address

;

3.3 Selecting particular columns from a table

SELECT * returns all columns from all of the tables included in your query. However, quite often you will want to return only
a subset of the possible columns. You can retrieve specific columns by listing the names of the columns you want after the
SELECT keyword. Separate each column name with a comma.

For example, to select just the city, county, and state from the actor.usr_address table, issue the following query:

SELECT city, county, state
FROM actor.usr_address

;

3.4 Sorting results with the ORDER BY clause

By default, a SELECT statement returns rows matching your query with no guarantee of any particular order in which they are
returned. To force the rows to be returned in a particular order, use the ORDER BY clause to specify one or more columns to
determine the sorting priority of the rows.

For example, to sort the rows returned from your actor.usr_address query by city, with county and then zip code as the
tie breakers, issue the following query:

SELECT city, county, state
FROM actor.usr_address
ORDER BY city, county, post_code

;

3.5 Filtering results with the WHERE clause

Thus far, your results have been returning all of the rows in the table. Normally, however, you would want to restrict the rows that
are returned to the subset of rows that match one or more conditions of your search. The WHERE clause enables you to specify a
set of conditions that filter your query results. Each condition in the WHERE clause is an SQL expression that returns a boolean
(true or false) value.

For example, to restrict the results returned from your actor.usr_address query to only those rows containing a state value
of Connecticut, issue the following query:

SELECT city, county, state
FROM actor.usr_address
WHERE state = ’Connecticut’
ORDER BY city, county, post_code

;

Introduction to SQL for Evergreen
administrators

8 / 28

You can include more conditions in the WHERE clause with the OR and AND operators. For example, to further restrict the results
returned from your actor.usr_address query to only those rows where the state column contains a value of Connecticut
and the city column contains a value of Hartford, issue the following query:

SELECT city, county, state
FROM actor.usr_address
WHERE state = ’Connecticut’
AND city = ’Hartford’

ORDER BY city, county, post_code
;

Note
To return rows where the state is Connecticut and the city is Hartford or New Haven, you must use parentheses to explicitly
group the city value conditions together, or else the database will evaluate the OR city = ’New Haven’ clause entirely
on its own and match all rows where the city column is New Haven, even though the state might not be Connecticut.

SELECT city, county, state
FROM actor.usr_address
WHERE state = ’Connecticut’
AND city = ’Hartford’ OR city = ’New Haven’

ORDER BY city, county, post_code
;

-- Can return unwanted rows because the OR is not grouped!

SELECT city, county, state
FROM actor.usr_address
WHERE state = ’Connecticut’
AND (city = ’Hartford’ OR city = ’New Haven’)

ORDER BY city, county, post_code
;

-- The parentheses ensure that the OR is applied to the cities, and the
-- state in either case must be ’Connecticut’

3.5.1 Comparison operators

Here is a partial list of comparison operators that are commonly used in WHERE clauses:

Comparing two scalar values

• x = y (equal to)

• x != y (not equal to)

• x < y (less than)

• x > y (greater than)

• x LIKE y (TEXT value x matches a subset of TEXT y, where y is a string that can contain % as a wildcard for 0 or more
characters, and _ as a wildcard for a single character. For example, WHERE ’all you can eat fish and chips
and a big stick’ LIKE ’%fish%stick’ would return TRUE)

• x ILIKE y (like LIKE, but the comparison ignores upper-case / lower-case)

• x IN y (x is in the list of values y, where y can be a list or a SELECT statement that returns a list)

Introduction to SQL for Evergreen
administrators

9 / 28

3.6 NULL values

SQL databases have a special way of representing the value of a column that has no value: NULL. A NULL value is not equal to
zero, and is not an empty string; it is equal to nothing, not even another NULL, because it has no value that can be compared.

To return rows from a table where a given column is not NULL, use the IS NOT NULL comparison operator.

SELECT id, first_given_name, family_name
FROM actor.usr
WHERE second_given_name IS NOT NULL

;

Similarly, to return rows from a table where a given column is NULL, use the IS NULL comparison operator.

SELECT id, first_given_name, second_given_name, family_name
FROM actor.usr
WHERE second_given_name IS NULL

;

id | first_given_name | second_given_name | family_name
----+------------------+-------------------+----------------

1 | Administrator | | System Account
(1 row)

Notice that the NULL value in the output is displayed as empty space, indistinguishable from an empty string; this is the default
display method in psql. You can change the behaviour of psql using the pset command:

evergreen=# \pset null ’(null)’
Null display is ’(null)’.

SELECT id, first_given_name, second_given_name, family_name
FROM actor.usr
WHERE second_given_name IS NULL

;

id | first_given_name | second_given_name | family_name
----+------------------+-------------------+----------------

1 | Administrator | (null) | System Account
(1 row)

Database queries within programming languages such as Perl and C have special methods of checking for NULL values in
returned results.

3.7 Text delimiter: ’

You might have noticed that we have been using the ’ character to delimit TEXT values and values such as dates and times that
are TEXT values. Sometimes, however, your TEXT value itself contains a ’ character, such as the word you’re. To prevent the
database from prematurely ending the TEXT value at the first ’ character and returning a syntax error, use another ’ character
to escape the following ’ character.

For example, to change the last name of a user in the actor.usr table to L’estat, issue the following SQL:

UPDATE actor.usr
SET family_name = ’L’’estat’
WHERE profile IN (
SELECT id

FROM permission.grp_tree
WHERE name = ’Vampire’

)
;

Introduction to SQL for Evergreen
administrators

10 / 28

When you retrieve the row from the database, the value is displayed with just a single ’ character:

SELECT id, family_name
FROM actor.usr
WHERE family_name = ’L’’estat’

;

id | family_name
----+-------------

1 | L’estat
(1 row)

3.8 Grouping and eliminating results with the GROUP BY and HAVING clauses

The GROUP BY clause returns a unique set of results for the desired columns. This is most often used in conjunction with an
aggregate function to present results for a range of values in a single query, rather than requiring you to issue one query per target
value.

SELECT grp
FROM permission.grp_perm_map
GROUP BY grp
ORDER BY grp;

grp
-----+

1
2
3
4
5
6
7

10
(8 rows)

While GROUP BY can be useful for a single column, it is more often used to return the distinct results across multiple columns.
For example, the following query shows us which groups have permissions at each depth in the library hierarchy:

SELECT grp, depth
FROM permission.grp_perm_map
GROUP BY grp, depth
ORDER BY depth, grp;

grp | depth
-----+-------

1 | 0
2 | 0
3 | 0
4 | 0
5 | 0

10 | 0
3 | 1
4 | 1
5 | 1
6 | 1
7 | 1

10 | 1
3 | 2
4 | 2

10 | 2
(15 rows)

Introduction to SQL for Evergreen
administrators

11 / 28

Extending this further, you can use the COUNT() aggregate function to also return the number of times each unique combination
of grp and depth appears in the table. Yes, this is a sneak peek at the use of aggregate functions! Keeners.

SELECT grp, depth, COUNT(grp)
FROM permission.grp_perm_map
GROUP BY grp, depth
ORDER BY depth, grp;

grp | depth | count
-----+-------+-------

1 | 0 | 6
2 | 0 | 2
3 | 0 | 45
4 | 0 | 3
5 | 0 | 5

10 | 0 | 1
3 | 1 | 3
4 | 1 | 4
5 | 1 | 1
6 | 1 | 9
7 | 1 | 5

10 | 1 | 10
3 | 2 | 24
4 | 2 | 8

10 | 2 | 7
(15 rows)

You can use the WHERE clause to restrict the returned results before grouping is applied to the results. The following query
restricts the results to those rows that have a depth of 0.

SELECT grp, COUNT(grp)
FROM permission.grp_perm_map
WHERE depth = 0
GROUP BY grp
ORDER BY 2 DESC

;

grp | count
-----+-------

3 | 45
1 | 6
5 | 5
4 | 3
2 | 2

10 | 1
(6 rows)

To restrict results after grouping has been applied to the rows, use the HAVING clause; this is typically used to restrict results
based on a comparison to the value returned by an aggregate function. For example, the following query restricts the returned
rows to those that have more than 5 occurrences of the same value for grp in the table.

SELECT grp, COUNT(grp)
FROM permission.grp_perm_map
GROUP BY grp
HAVING COUNT(grp) > 5

;

grp | count
-----+-------

6 | 9
4 | 15
5 | 6

Introduction to SQL for Evergreen
administrators

12 / 28

1 | 6
3 | 72

10 | 18
(6 rows)

3.9 Eliminating duplicate results with the DISTINCT keyword

GROUP BY is one way of eliminating duplicate results from the rows returned by your query. The purpose of the DISTINCT
keyword is to remove duplicate rows from the results of your query. However, it works, and it is easy - so if you just want a quick
list of the unique set of values for a column or set of columns, the DISTINCT keyword might be appropriate.

On the other hand, if you are getting duplicate rows back when you don’t expect them, then applying the DISTINCT keyword
might be a sign that you are papering over a real problem.

SELECT DISTINCT grp, depth
FROM permission.grp_perm_map
ORDER BY depth, grp

;

grp | depth
-----+-------

1 | 0
2 | 0
3 | 0
4 | 0
5 | 0

10 | 0
3 | 1
4 | 1
5 | 1
6 | 1
7 | 1

10 | 1
3 | 2
4 | 2

10 | 2
(15 rows)

3.10 Paging through results with the LIMIT and OFFSET clauses

The LIMIT clause restricts the total number of rows returned from your query and is useful if you just want to list a subset of a
large number of rows. For example, in the following query we list the five most frequently used circulation modifiers:

SELECT circ_modifier, COUNT(circ_modifier)
FROM asset.copy
GROUP BY circ_modifier
ORDER BY 2 DESC
LIMIT 5

;

circ_modifier | count
---------------+--------
CIRC | 741995
BOOK | 636199
SER | 265906
DOC | 191598
LAW MONO | 126627

(5 rows)

Introduction to SQL for Evergreen
administrators

13 / 28

When you use the LIMIT clause to restrict the total number of rows returned by your query, you can also use the OFFSET clause
to determine which subset of the rows will be returned. The use of the OFFSET clause assumes that you’ve used the ORDER BY
clause to impose order on the results.

In the following example, we use the OFFSET clause to get results 6 through 10 from the same query that we prevously executed.

SELECT circ_modifier, COUNT(circ_modifier)
FROM asset.copy
GROUP BY circ_modifier
ORDER BY 2 DESC
LIMIT 5
OFFSET 5

;

circ_modifier | count
---------------+--------
LAW SERIAL | 102758
DOCUMENTS | 86215
BOOK_WEB | 63786
MFORM SER | 39917
REF | 34380

(5 rows)

4 Part 3: Advanced SQL queries

4.1 Learning objectives

• Understand the difference between scalar functions and aggregate functions

• Know how to use functions to transform column values for comparison and return values

• Know how to retrieve values from across multiple tables

• Understand the difference between inner joins, outer joins, unions, and intersections

• Know how to create a view to simplify frequently used queries

Thus far you’ve been working with a single table at a time - and you have been able accomplish a great deal. However, relational
databases by their nature spread data across multiple tables, so it is important to learn how to bring that data back together in
your queries. In addition, real data in the wild often requires taming by transforming it to different states so that you can, for
example, compare values more efficiently, or reduce the number of results, or find the maximum value in a set of results.

4.2 Transforming column values with functions

PostgreSQL includes many built-in functions for manipulating column data. You can also create your own functions (and
Evergreen does make use of many custom functions). There are two types of functions used in databases: scalar functions and
aggregate functions.

4.2.1 Scalar functions

Scalar functions transform each value of the target column. If your query would return 50 values for a column in a given query,
and you modify your query to apply a scalar function to the values returned for that column, it will still return 50 values. For
example, the UPPER() function, used to convert text values to upper-case, modifies the results in the following set of queries:

Introduction to SQL for Evergreen
administrators

14 / 28

-- First, without the UPPER() function for comparison
SELECT shortname, name

FROM actor.org_unit
WHERE id < 4

;

shortname | name
-----------+-----------------------
CONS | Example Consortium
SYS1 | Example System 1
SYS2 | Example System 2

(3 rows)

-- Now apply the UPPER() function to the name column
SELECT shortname, UPPER(name)

FROM actor.org_unit
WHERE id < 4

;

shortname | upper
-----------+--------------------
CONS | EXAMPLE CONSORTIUM
SYS1 | EXAMPLE SYSTEM 1
SYS2 | EXAMPLE SYSTEM 2

(3 rows)

There are so many scalar functions in PostgreSQL that we cannot cover them all here, but we can list some of the most commonly
used functions:

• || - concatenates two text values together

• COALESCE() - returns the first non-NULL value from the list of arguments

• LOWER() - returns a text value converted to lower-case

• REPLACE() - returns a text value after replacing all occurrences of a given text value with a different text value

• REGEXP_REPLACE() - returns a text value after being transformed by a regular expression

• UPPER() - returns a text value converted to upper-case

For a complete list of scalar functions, see the PostgreSQL function documentation.

4.2.2 Aggregate functions

Aggregate functions return a single value computed from the the complete set of values returned for the specified column.

• AVG()

• COUNT()

• MAX()

• MIN()

• SUM()

http://www.postgresql.org/docs/8.3/interactive/functions.html

Introduction to SQL for Evergreen
administrators

15 / 28

4.3 Sub-selects

A sub-select is the technique of using the results of one query to feed into another query. You can, for example, return a set of
values from one column in a SELECT statement to be used to satisfy the IN() condition of another SELECT statement; or you
could return the MAX() value of a column in a SELECT statement to match the = condition of another SELECT statement.

For example, in the following query we use a sub-select to restrict the copies returned by the main SELECT statement to only
those locations that have an opac_visible value of TRUE:

SELECT call_number
FROM asset.copy
WHERE deleted IS FALSE
AND location IN (
SELECT id

FROM asset.copy_location
WHERE opac_visible IS TRUE

)
;

Sub-selects can be an approachable way to breaking down a problem that requires matching values between different tables, and
often result in a clearly expressed solution to a problem. However, if you start writing sub-selects within sub-selects, you should
consider tackling the problem with joins instead.

4.4 Joins

Joins enable you to access the values from multiple tables in your query results and comparison operators. For example, joins are
what enable you to relate a bibliographic record to a barcoded copy via the biblio.record_entry, asset.call_number,
and asset.copy tables. In this section, we discuss the most common kind of join—the inner join—as well as the less common
outer join and some set operations which can compare and contrast the values returned by separate queries.

When we talk about joins, we are going to talk about the left-hand table and the right-hand table that participate in the join. Every
join brings together just two tables - but you can use an unlimited (for our purposes) number of joins in a single SQL statement.
Each time you use a join, you effectively create a new table, so when you add a second join clause to a statement, table 1 and
table 2 (which were the left-hand table and the right-hand table for the first join) now act as a merged left-hand table and the new
table in the second join clause is the right-hand table.

Clear as mud? Okay, let’s look at some examples.

4.4.1 Inner joins

An inner join returns all of the columns from the left-hand table in the join with all of the columns from the right-hand table in
the joins that match a condition in the ON clause. Typically, you use the = operator to match the foreign key of the left-hand
table with the primary key of the right-hand table to follow the natural relationship between the tables.

In the following example, we return all of columns from the actor.usr and actor.org_unit tables, joined on the relation-
ship between the user’s home library and the library’s ID. Notice in the results that some columns, like id and mailing_address,
appear twice; this is because both the actor.usr and actor.org_unit tables include columns with these names. This is
also why we have to fully qualify the column names in our queries with the schema and table names.

SELECT *
FROM actor.usr
INNER JOIN actor.org_unit ON actor.usr.home_ou = actor.org_unit.id
WHERE actor.org_unit.shortname = ’CONS’

;

-[RECORD 1]------------------+---------------------------------
id | 1
card | 1
profile | 1
usrname | admin

Introduction to SQL for Evergreen
administrators

16 / 28

email |
...
mailing_address |
billing_address |
home_ou | 1
...
claims_never_checked_out_count | 0
id | 1
parent_ou |
ou_type | 1
ill_address | 1
holds_address | 1
mailing_address | 1
billing_address | 1
shortname | CONS
name | Example Consortium
email |
phone |
opac_visible | t
fiscal_calendar | 1

Of course, you do not have to return every column from the joined tables; you can (and should) continue to specify only the
columns that you want to return. In the following example, we count the number of borrowers for every user profile in a given
library by joining the permission.grp_tree table where profiles are defined against the actor.usr table, and then
joining the actor.org_unit table to give us access to the user’s home library:

SELECT permission.grp_tree.name, actor.org_unit.name, COUNT(permission.grp_tree.name)
FROM actor.usr
INNER JOIN permission.grp_tree

ON actor.usr.profile = permission.grp_tree.id
INNER JOIN actor.org_unit

ON actor.org_unit.id = actor.usr.home_ou
WHERE actor.usr.deleted IS FALSE
GROUP BY permission.grp_tree.name, actor.org_unit.name
ORDER BY actor.org_unit.name, permission.grp_tree.name

;

name | name | count
-------+--------------------+-------
Users | Example Consortium | 1

(1 row)

4.4.2 Aliases

So far we have been fully-qualifying all of our table names and column names to prevent any confusion. This quickly gets
tiring with lengthy qualified table names like permission.grp_tree, so the SQL syntax enables us to assign aliases to
table names and column names. When you define an alias for a table name, you can access its column throughout the rest of
the statement by simply appending the column name to the alias with a period; for example, if you assign the alias au to the
actor.usr table, you can access the actor.usr.id column through the alias as au.id.

The formal syntax for declaring an alias for a column is to follow the column name in the result columns clause with AS alias.
To declare an alias for a table name, follow the table name in the FROM clause (including any JOIN statements) with AS alias.
However, the AS keyword is optional for tables (and columns as of PostgreSQL 8.4), and in practice most SQL statements leave
it out. For example, we can write the previous INNER JOIN statement example using aliases instead of fully-qualified identifiers:

SELECT pgt.name AS "Profile", aou.name AS "Library", COUNT(pgt.name) AS "Count"
FROM actor.usr au
INNER JOIN permission.grp_tree pgt

ON au.profile = pgt.id
INNER JOIN actor.org_unit aou

Introduction to SQL for Evergreen
administrators

17 / 28

ON aou.id = au.home_ou
WHERE au.deleted IS FALSE
GROUP BY pgt.name, aou.name
ORDER BY aou.name, pgt.name

;

Profile | Library | Count
---------+--------------------+-------
Users | Example Consortium | 1

(1 row)

A nice side effect of declaring an alias for your columns is that the alias is used as the column header in the results table. The
previous version of the query, which didn’t use aliased column names, had two columns named name; this version of the query
with aliases results in a clearer categorization.

4.4.3 Outer joins

An outer join returns all of the rows from one or both of the tables participating in the join.

• For a LEFT OUTER JOIN, the join returns all of the rows from the left-hand table and the rows matching the join condition
from the right-hand table, with NULL values for the rows with no match in the right-hand table.

• A RIGHT OUTER JOIN behaves in the same way as a LEFT OUTER JOIN, with the exception that all rows are returned from
the right-hand table participating in the join.

• For a FULL OUTER JOIN, the join returns all the rows from both the left-hand and right-hand tables, with NULL values for
the rows with no match in either the left-hand or right-hand table.

SELECT * FROM aaa;

id | stuff
----+-------

1 | one
2 | two
3 | three
4 | four
5 | five

(5 rows)

SELECT * FROM bbb;

id | stuff | foo
----+-------+----------

1 | one | oneone
2 | two | twotwo
5 | five | fivefive
6 | six | sixsix

(4 rows)

SELECT * FROM aaa
LEFT OUTER JOIN bbb ON aaa.id = bbb.id

;
id | stuff | id | stuff | foo

----+-------+----+-------+----------
1 | one | 1 | one | oneone
2 | two | 2 | two | twotwo
3 | three | | |
4 | four | | |
5 | five | 5 | five | fivefive

(5 rows)

Introduction to SQL for Evergreen
administrators

18 / 28

SELECT * FROM aaa
RIGHT OUTER JOIN bbb ON aaa.id = bbb.id

;
id | stuff | id | stuff | foo

----+-------+----+-------+----------
1 | one | 1 | one | oneone
2 | two | 2 | two | twotwo
5 | five | 5 | five | fivefive
| | 6 | six | sixsix

(4 rows)

SELECT * FROM aaa
FULL OUTER JOIN bbb ON aaa.id = bbb.id

;
id | stuff | id | stuff | foo

----+-------+----+-------+----------
1 | one | 1 | one | oneone
2 | two | 2 | two | twotwo
3 | three | | |
4 | four | | |
5 | five | 5 | five | fivefive
| | 6 | six | sixsix

(6 rows)

4.4.4 Self joins

It is possible to join a table to itself. You can, in fact you must, use aliases to disambiguate the references to the table.

4.5 Set operations

Relational databases are effectively just an efficient mechanism for manipulating sets of values; they are implementations of set
theory. There are three operators for sets (tables) in which each set must have the same number of columns with compatible data
types: the union, intersection, and difference operators.

SELECT * FROM aaa;

id | stuff
----+-------

1 | one
2 | two
3 | three
4 | four
5 | five

(5 rows)

SELECT * FROM bbb;

id | stuff | foo
----+-------+----------

1 | one | oneone
2 | two | twotwo
5 | five | fivefive
6 | six | sixsix

(4 rows)

Introduction to SQL for Evergreen
administrators

19 / 28

4.5.1 Union

The UNION operator returns the distinct set of rows that are members of either or both of the left-hand and right-hand tables.
The UNION operator does not return any duplicate rows. To return duplicate rows, use the UNION ALL operator.

-- The parentheses are not required, but are intended to help
-- illustrate the sets participating in the set operation
(

SELECT id, stuff
FROM aaa

)
UNION
(

SELECT id, stuff
FROM bbb

)
ORDER BY 1
;

id | stuff
----+-------

1 | one
2 | two
3 | three
4 | four
5 | five
6 | six

(6 rows)

4.5.2 Intersection

The INTERSECT operator returns the distinct set of rows that are common to both the left-hand and right-hand tables. To return
duplicate rows, use the INTERSECT ALL operator.

(
SELECT id, stuff
FROM aaa

)
INTERSECT
(

SELECT id, stuff
FROM bbb

)
ORDER BY 1
;

id | stuff
----+-------

1 | one
2 | two
5 | five

(3 rows)

4.5.3 Difference

The EXCEPT operator returns the rows in the left-hand table that do not exist in the right-hand table. You are effectively
subtracting the common rows from the left-hand table.

Introduction to SQL for Evergreen
administrators

20 / 28

(
SELECT id, stuff
FROM aaa

)
EXCEPT
(

SELECT id, stuff
FROM bbb

)
ORDER BY 1
;

id | stuff
----+-------

3 | three
4 | four

(2 rows)

-- Order matters: switch the left-hand and right-hand tables
-- and you get a different result
(

SELECT id, stuff
FROM bbb

)
EXCEPT
(

SELECT id, stuff
FROM aaa

)
ORDER BY 1
;

id | stuff
----+-------

6 | six
(1 row)

4.6 Views

A view is a persistent SELECT statement that acts like a read-only table. To create a view, issue the CREATE VIEW statement,
giving the view a name and a SELECT statement on which the view is built.

The following example creates a view based on our borrower profile count:

CREATE VIEW actor.borrower_profile_count AS
SELECT pgt.name AS "Profile", aou.name AS "Library", COUNT(pgt.name) AS "Count"
FROM actor.usr au

INNER JOIN permission.grp_tree pgt
ON au.profile = pgt.id

INNER JOIN actor.org_unit aou
ON aou.id = au.home_ou

WHERE au.deleted IS FALSE
GROUP BY pgt.name, aou.name
ORDER BY aou.name, pgt.name

;

When you subsequently select results from the view, you can apply additional WHERE clauses to filter the results, or ORDER BY
clauses to change the order of the returned rows. In the following examples, we issue a simple SELECT * statement to show
that the default results are returned in the same order from the view as the equivalent SELECT statement would be returned.
Then we issue a SELECT statement with a WHERE clause to further filter the results.

Introduction to SQL for Evergreen
administrators

21 / 28

SELECT * FROM actor.borrower_profile_count;

Profile | Library | Count
----------------------------+----------------------------+-------
Faculty | University Library | 208
Graduate | University Library | 16
Patrons | University Library | 62

...

-- You can still filter your results with WHERE clauses
SELECT *

FROM actor.borrower_profile_count
WHERE "Profile" = ’Faculty’;

Profile | Library | Count
---------+----------------------------+-------
Faculty | University Library | 208
Faculty | College Library | 64
Faculty | College Library 2 | 102
Faculty | University Library 2 | 776

(4 rows)

4.7 Inheritance

PostgreSQL supports table inheritance: that is, a child table inherits its base definition from a parent table, but can add additional
columns to its own definition. The data from any child tables is visible in queries against the parent table.

Evergreen uses table inheritance in several areas: * In the Vandelay MARC batch importer / exporter, Evergreen defines base
tables for generic queues and queued records for which authority record and bibliographic record child tables * Billable trans-
actions are based on the money.billable_xact table; child tables include action.circulation for circulation trans-
actions and money.grocery for general bills. * Payments are based on the money.payment table; its child table is
money.bnm_payment (for brick-and-mortar payments), which in turn has child tables of money.forgive_payment,
money.work_payment, money.credit_payment, money.goods_payment, and money.bnm_desk_payment.
The money.bnm_desk_payment table in turn has child tables of money.cash_payment, money.check_payment,
and money.credit_card_payment. * Transits are based on the action.transit_copy table, which has a child ta-
ble of action.hold_transit_copy for transits initiated by holds. * Generic acquisition line items are defined by the
acq.lineitem_attr_definition table, which in turn has a number of child tables to define MARC attributes, generated
attributes, user attributes, and provider attributes.

5 Part 4: Understanding query performance with EXPLAIN

Some queries run for a long, long time. This can be the result of a poorly written query—a query with a join condition that joins
every row in the biblio.record_entry table with every row in the metabib.full_rec view would consume a massive
amount of memory and disk space and CPU time—or a symptom of a schema that needs some additional indexes. PostgreSQL
provides the EXPLAIN tool to estimate how long it will take to run a given query and show you the query plan (how it plans to
retrieve the results from the database).

To generate the query plan without actually running the statement, simply prepend the EXPLAIN keyword to your query. In the
following example, we generate the query plan for the poorly written query that would join every row in the biblio.record_entry
table with every row in the metabib.full_rec view:

EXPLAIN SELECT *
FROM biblio.record_entry
FULL OUTER JOIN metabib.full_rec ON 1=1

;

QUERY PLAN

Introduction to SQL for Evergreen
administrators

22 / 28

---//
Merge Full Join (cost=0.00..4959156437783.60 rows=132415734100864 width=1379)
-> Seq Scan on record_entry (cost=0.00..400634.16 rows=2013416 width=1292)
-> Seq Scan on real_full_rec (cost=0.00..1640972.04 rows=65766704 width=87)

(3 rows)

This query plan shows that the query would return 132415734100864 rows, and it plans to accomplish what you asked for by
sequentially scanning (Seq Scan) every row in each of the tables participating in the join.

In the following example, we have realized our mistake in joining every row of the left-hand table with every row in the right-hand
table and take the saner approach of using an INNER JOIN where the join condition is on the record ID.

EXPLAIN SELECT *
FROM biblio.record_entry bre
INNER JOIN metabib.full_rec mfr ON mfr.record = bre.id;

QUERY PLAN
--//
Hash Join (cost=750229.86..5829273.98 rows=65766704 width=1379)
Hash Cond: (real_full_rec.record = bre.id)
-> Seq Scan on real_full_rec (cost=0.00..1640972.04 rows=65766704 width=87)
-> Hash (cost=400634.16..400634.16 rows=2013416 width=1292)

-> Seq Scan on record_entry bre (cost=0.00..400634.16 rows=2013416 width=1292)
(5 rows)

This time, we will return 65766704 rows - still way too many rows. We forgot to include a WHERE clause to limit the results to
something meaningful. In the following example, we will limit the results to deleted records that were modified in the last month.

EXPLAIN SELECT *
FROM biblio.record_entry bre
INNER JOIN metabib.full_rec mfr ON mfr.record = bre.id

WHERE bre.deleted IS TRUE
AND DATE_TRUNC(’MONTH’, bre.edit_date) >

DATE_TRUNC (’MONTH’, NOW() - ’1 MONTH’::INTERVAL)
;

QUERY PLAN
--//
Hash Join (cost=5058.86..2306218.81 rows=201669 width=1379)
Hash Cond: (real_full_rec.record = bre.id)
-> Seq Scan on real_full_rec (cost=0.00..1640972.04 rows=65766704 width=87)
-> Hash (cost=4981.69..4981.69 rows=6174 width=1292)

-> Index Scan using biblio_record_entry_deleted on record_entry bre
(cost=0.00..4981.69 rows=6174 width=1292)

Index Cond: (deleted = true)
Filter: ((deleted IS TRUE) AND (date_trunc(’MONTH’::text, edit_date)
> date_trunc(’MONTH’::text, (now() - ’1 mon’::interval))))

(7 rows)

We can see that the number of rows returned is now only 201669; that’s something we can work with. Also, the overall cost of
the query is 2306218, compared to 4959156437783 in the original query. The Index Scan tells us that the query planner will
use the index that was defined on the deleted column to avoid having to check every row in the biblio.record_entry
table.

However, we are still running a sequential scan over the metabib.real_full_rec table (the table on which the metabib.full_rec
view is based). Given that linking from the bibliographic records to the flattened MARC subfields is a fairly common operation,
we could create a new index and see if that speeds up our query plan.

-- This index will take a long time to create on a large database
-- of bibliographic records
CREATE INDEX bib_record_idx ON metabib.real_full_rec (record);

EXPLAIN SELECT *

Introduction to SQL for Evergreen
administrators

23 / 28

FROM biblio.record_entry bre
INNER JOIN metabib.full_rec mfr ON mfr.record = bre.id

WHERE bre.deleted IS TRUE
AND DATE_TRUNC(’MONTH’, bre.edit_date) >

DATE_TRUNC (’MONTH’, NOW() - ’1 MONTH’::INTERVAL)
;

QUERY PLAN
--//
Nested Loop (cost=0.00..1558330.46 rows=201669 width=1379)
-> Index Scan using biblio_record_entry_deleted on record_entry bre

(cost=0.00..4981.69 rows=6174 width=1292)
Index Cond: (deleted = true)
Filter: ((deleted IS TRUE) AND (date_trunc(’MONTH’::text, edit_date) >

date_trunc(’MONTH’::text, (now() - ’1 mon’::interval))))
-> Index Scan using bib_record_idx on real_full_rec

(cost=0.00..240.89 rows=850 width=87)
Index Cond: (real_full_rec.record = bre.id)

(6 rows)

We can see that the resulting number of rows is still the same (201669), but the execution estimate has dropped to 1558330
because the query planner can use the new index (bib_record_idx) rather than scanning the entire table. Success!

Note
While indexes can significantly speed up read access to tables for common filtering conditions, every time a row is created or
updated the corresponding indexes also need to be maintained - which can decrease the performance of writes to the database.
Be careful to keep the balance of read performance versus write performance in mind if you plan to create custom indexes in
your Evergreen database.

6 Part 5: Inserting, updating, and deleting data

6.1 Inserting data

To insert one or more rows into a table, use the INSERT statement to identify the target table and list the columns in the table
for which you are going to provide values for each row. If you do not list one or more columns contained in the table, the
database will automatically supply a NULL value for those columns. The values for each row follow the VALUES clause and are
grouped in parentheses and delimited by commas. Each row, in turn, is delimited by commas (this multiple row syntax requires
PostgreSQL 8.2 or higher).

For example, to insert two rows into the permission.usr_grp_map table:

INSERT INTO permission.usr_grp_map (usr, grp)
VALUES (2, 10), (2, 4)

;

Of course, as with the rest of SQL, you can replace individual column values with one or more use sub-selects:

INSERT INTO permission.usr_grp_map (usr, grp)
VALUES (
(SELECT id FROM actor.usr

WHERE family_name = ’Scott’ AND first_given_name = ’Daniel’),
(SELECT id FROM permission.grp_tree

WHERE name = ’Local System Administrator’)
), (
(SELECT id FROM actor.usr

WHERE family_name = ’Scott’ AND first_given_name = ’Daniel’),
(SELECT id FROM permission.grp_tree

Introduction to SQL for Evergreen
administrators

24 / 28

WHERE name = ’Circulator’)
)

;

6.2 Inserting data using a SELECT statement

Sometimes you want to insert a bulk set of data into a new table based on a query result. Rather than a VALUES clause, you
can use a SELECT statement to insert one or more rows matching the column definitions. This is a good time to point out that
you can include explicit values, instead of just column identifiers, in the return columns of the SELECT statement. The explicit
values are returned in every row of the result set.

In the following example, we insert 6 rows into the permission.usr_grp_map table; each row will have a usr column
value of 1, with varying values for the grp column value based on the id column values returned from permission.grp_tree:

INSERT INTO permission.usr_grp_map (usr, grp)
SELECT 1, id
FROM permission.grp_tree
WHERE id > 2

;

INSERT 0 6

6.3 Deleting rows

Deleting data from a table is normally fairly easy. To delete rows from a table, issue a DELETE statement identifying the table
from which you want to delete rows and a WHERE clause identifying the row or rows that should be deleted.

In the following example, we delete all of the rows from the permission.grp_perm_map table where the permission maps
to UPDATE_ORG_UNIT_CLOSING and the group is anything other than administrators:

DELETE FROM permission.grp_perm_map
WHERE grp IN (
SELECT id

FROM permission.grp_tree
WHERE name != ’Local System Administrator’

) AND perm = (
SELECT id

FROM permission.perm_list
WHERE code = ’UPDATE_ORG_UNIT_CLOSING’

)
;

Note
There are two main reasons that a DELETE statement may not actually delete rows from a table, even when the rows meet the
conditional clause.

1. If the row contains a value that is the target of a relational constraint, for example, if another table has a foreign key pointing
at your target table, you will be prevented from deleting a row with a value corresponding to a row in the dependent table.

2. If the table has a rule that substitutes a different action for a DELETE statement, the deletion will not take place. In
Evergreen it is common for a table to have a rule that substitutes the action of setting a deleted column to TRUE. For
example, if a book is discarded, deleting the row representing the copy from the asset.copy table would severely
affect circulation statistics, bills, borrowing histories, and their corresponding tables in the database that have foreign keys
pointing at the asset.copy table (action.circulation and money.billing and its children respectively).
Instead, the deleted column value is set to TRUE and Evergreen’s application logic skips over these rows in most cases.

Introduction to SQL for Evergreen
administrators

25 / 28

6.4 Updating rows

To update rows in a table, issue an UPDATE statement identifying the table you want to update, the column or columns that you
want to set with their respective new values, and (optionally) a WHERE clause identifying the row or rows that should be updated.

Following is the syntax for the UPDATE statement:

UPDATE [table-name]
SET [column] TO [new-value]
WHERE [condition]

;

7 Part 6: Query requests

The following queries were requested by Bibliomation, but might be reusable by other libraries.

7.1 Monthly circulation stats by collection code / library

SELECT COUNT(acirc.id) AS "COUNT", aou.name AS "Library", acl.name AS "Copy Location"
FROM asset.copy ac
INNER JOIN asset.copy_location acl ON ac.location = acl.id
INNER JOIN action.circulation acirc ON acirc.target_copy = ac.id
INNER JOIN actor.org_unit aou ON acirc.circ_lib = aou.id

WHERE DATE_TRUNC(’MONTH’, acirc.create_time) = DATE_TRUNC(’MONTH’, NOW() - INTERVAL ’3 ←↩
month’)

AND acirc.desk_renewal IS FALSE
AND acirc.opac_renewal IS FALSE
AND acirc.phone_renewal IS FALSE

GROUP BY aou.name, acl.name
ORDER BY aou.name, acl.name, 1

;

7.2 Monthly circulation stats by borrower stat / library

SELECT COUNT(acirc.id) AS "COUNT", aou.name AS "Library", asceum.stat_cat_entry AS " ←↩
Borrower Stat"

FROM action.circulation acirc
INNER JOIN actor.org_unit aou ON acirc.circ_lib = aou.id
INNER JOIN actor.stat_cat_entry_usr_map asceum ON asceum.target_usr = acirc.usr
INNER JOIN actor.stat_cat astat ON asceum.stat_cat = astat.id

WHERE DATE_TRUNC(’MONTH’, acirc.create_time) = DATE_TRUNC(’MONTH’, NOW() - INTERVAL ’3 ←↩
month’)

AND astat.name = ’Preferred language’
AND acirc.desk_renewal IS FALSE
AND acirc.opac_renewal IS FALSE
AND acirc.phone_renewal IS FALSE

GROUP BY aou.name, asceum.stat_cat_entry
ORDER BY aou.name, asceum.stat_cat_entry, 1

;

Introduction to SQL for Evergreen
administrators

26 / 28

7.3 Monthly intralibrary loan stats by library

SELECT aou.name AS "Library", COUNT(acirc.id)
FROM action.circulation acirc
INNER JOIN actor.org_unit aou ON acirc.circ_lib = aou.id
INNER JOIN asset.copy ac ON acirc.target_copy = ac.id
INNER JOIN asset.call_number acn ON ac.call_number = acn.id

WHERE acirc.circ_lib != acn.owning_lib
AND DATE_TRUNC(’MONTH’, acirc.create_time) = DATE_TRUNC(’MONTH’, NOW() - INTERVAL ’3 ←↩

month’)
AND acirc.desk_renewal IS FALSE
AND acirc.opac_renewal IS FALSE
AND acirc.phone_renewal IS FALSE

GROUP by aou.name
ORDER BY aou.name, 2

;

7.4 Monthly borrowers added by profile (adult, child, etc) / library

SELECT pgt.name AS "Profile", aou.name AS "Library", COUNT(pgt.name) AS "Count"
FROM actor.usr au
INNER JOIN permission.grp_tree pgt

ON au.profile = pgt.id
INNER JOIN actor.org_unit aou

ON aou.id = au.home_ou
WHERE au.deleted IS FALSE
AND DATE_TRUNC(’MONTH’, au.create_date) = DATE_TRUNC(’MONTH’, NOW() - ’3 months’:: ←↩

interval)
GROUP BY pgt.name, aou.name
ORDER BY aou.name, pgt.name

;

7.5 Borrower count by profile (adult, child, etc) / library

SELECT pgt.name AS "Profile", aou.name AS "Library", COUNT(pgt.name) AS "Count"
FROM actor.usr au
INNER JOIN permission.grp_tree pgt

ON au.profile = pgt.id
INNER JOIN actor.org_unit aou

ON aou.id = au.home_ou
WHERE au.deleted IS FALSE
GROUP BY pgt.name, aou.name
ORDER BY aou.name, pgt.name

;

7.6 Monthly items added by collection / library

We define a "collection" as a shelving location in Evergreen.

SELECT aou.name AS "Library", acl.name, COUNT(ac.barcode)
FROM actor.org_unit aou
INNER JOIN asset.call_number acn ON acn.owning_lib = aou.id
INNER JOIN asset.copy ac ON ac.call_number = acn.id
INNER JOIN asset.copy_location acl ON ac.location = acl.id

WHERE ac.deleted IS FALSE
AND acn.deleted IS FALSE

Introduction to SQL for Evergreen
administrators

27 / 28

AND DATE_TRUNC(’MONTH’, ac.create_date) = DATE_TRUNC(’MONTH’, NOW() - ’1 month’:: ←↩
interval)

GROUP BY aou.name, acl.name
ORDER BY aou.name, acl.name

;

7.7 Hold purchase alert by library

in the following set of queries, we bring together the active title, volume, and copy holds and display those that have more than
a certain number of holds per title. The goal is to UNION ALL the three queries, then group by the bibliographic record ID and
display the title / author information for those records that have more than a given threshold of holds.

-- Title holds
SELECT all_holds.bib_id, aou.name, rmsr.title, rmsr.author, COUNT(all_holds.bib_id)

FROM
(

(
SELECT target, request_lib
FROM action.hold_request
WHERE hold_type = ’T’

AND fulfillment_time IS NULL
AND cancel_time IS NULL

)
UNION ALL
-- Volume holds
(

SELECT bre.id, request_lib
FROM action.hold_request ahr

INNER JOIN asset.call_number acn ON ahr.target = acn.id
INNER JOIN biblio.record_entry bre ON acn.record = bre.id

WHERE ahr.hold_type = ’V’
AND ahr.fulfillment_time IS NULL
AND ahr.cancel_time IS NULL

)
UNION ALL
-- Copy holds
(

SELECT bre.id, request_lib
FROM action.hold_request ahr

INNER JOIN asset.copy ac ON ahr.target = ac.id
INNER JOIN asset.call_number acn ON ac.call_number = acn.id
INNER JOIN biblio.record_entry bre ON acn.record = bre.id

WHERE ahr.hold_type = ’C’
AND ahr.fulfillment_time IS NULL
AND ahr.cancel_time IS NULL

)
) AS all_holds(bib_id, request_lib)

INNER JOIN reporter.materialized_simple_record rmsr
INNER JOIN actor.org_unit aou ON aou.id = all_holds.request_lib
ON rmsr.id = all_holds.bib_id

GROUP BY all_holds.bib_id, aou.name, rmsr.id, rmsr.title, rmsr.author
HAVING COUNT(all_holds.bib_id) > 2
ORDER BY aou.name

;

7.8 Update borrower records with a different home library

In this example, the library has opened a new branch in a growing area, and wants to reassign the home library for the patrons in
the vicinity of the new branch to the new branch. To accomplish this, we create a staging table that holds a set of city names and

Introduction to SQL for Evergreen
administrators

28 / 28

the corresponding branch shortname for the home library for each city.

Then we issue an UPDATE statement to set the home library for patrons with a physical address with a city that matches the city
names in our staging table.

CREATE SCHEMA staging;
CREATE TABLE staging.city_home_ou_map (city TEXT, ou_shortname TEXT,

FOREIGN KEY (ou_shortname) REFERENCES actor.org_unit (shortname));
INSERT INTO staging.city_home_ou_map (city, ou_shortname)

VALUES (’Southbury’, ’BR1’), (’Middlebury’, ’BR2’), (’Hartford’, ’BR3’);
BEGIN;

UPDATE actor.usr au SET home_ou = COALESCE(
(
SELECT aou.id

FROM actor.org_unit aou
INNER JOIN staging.city_home_ou_map schom ON schom.ou_shortname = aou.shortname
INNER JOIN actor.usr_address aua ON aua.city = schom.city

WHERE au.id = aua.usr
GROUP BY aou.id

), home_ou)
WHERE (

SELECT aou.id
FROM actor.org_unit aou

INNER JOIN staging.city_home_ou_map schom ON schom.ou_shortname = aou.shortname
INNER JOIN actor.usr_address aua ON aua.city = schom.city

WHERE au.id = aua.usr
GROUP BY aou.id

) IS NOT NULL;

8 License

This work is licensed under a Creative Commons Attribution-Share Alike 2.5 Canada License.

http://creativecommons.org/licenses/by-sa/2.5/ca/

	Preface
	Part 1: Introduction to SQL Databases
	Learning objectives
	Introduction
	Tables
	Schemas
	Columns
	Constraints
	Prevent NULL values
	Primary key
	Foreign keys
	Check constraints

	Deconstructing a table definition statement
	Displaying a table definition using psql

	Part 2: Basic SQL queries
	Learning objectives
	The SELECT statement
	Selecting particular columns from a table
	Sorting results with the ORDER BY clause
	Filtering results with the WHERE clause
	Comparison operators
	Comparing two scalar values

	NULL values
	Text delimiter: '
	Grouping and eliminating results with the GROUP BY and HAVING clauses
	Eliminating duplicate results with the DISTINCT keyword
	Paging through results with the LIMIT and OFFSET clauses

	Part 3: Advanced SQL queries
	Learning objectives
	Transforming column values with functions
	Scalar functions
	Aggregate functions

	Sub-selects
	Joins
	Inner joins
	Aliases
	Outer joins
	Self joins

	Set operations
	Union
	Intersection
	Difference

	Views
	Inheritance

	Part 4: Understanding query performance with EXPLAIN
	Part 5: Inserting, updating, and deleting data
	Inserting data
	Inserting data using a SELECT statement
	Deleting rows
	Updating rows

	Part 6: Query requests
	Monthly circulation stats by collection code / library
	Monthly circulation stats by borrower stat / library
	Monthly intralibrary loan stats by library
	Monthly borrowers added by profile (adult, child, etc) / library
	Borrower count by profile (adult, child, etc) / library
	Monthly items added by collection / library
	Hold purchase alert by library
	Update borrower records with a different home library

	License

