

Evergreen SQL Bootcamp

Dan Scott
Coffee|Code Consulting

January 31/February 1, 2013

http://creativecommons.org/licenses/by-sa/2.5/ca

Day 1 agenda

● 9:00 – 9:30: Connect to the test server
● 9:30 – 10:30: Database concepts
● 10:30 – 11:00: Explore the Evergreen schema
● 11:00 – 12:00: SELECT statements, part 1
● 12:00 – 12:30ish: Lunch break
● 12:30ish – 1:30: SELECT statements, part 2
● 1:30 – 2:00: SELECT exercises
● 2:00 – 3:00 : Joining tables

Introducing SQL databases

● SQL: Structured Query Language
● Tables
● Rows (aka tuples) and columns (aka fields)
● Schemas
● Data types
● Constraints
● What more could you possibly want?

Tables, rows, and columns

● A database contains one or more tables,
each of which has a specific name

– actor.usr, action.circulation, asset.copy

● Tables hold rows of data that conform to a
specific definition for that table; each row has
one or more columns with specific data types

– id INTEGER, first_given_name TEXT

Tables - rows

Row 1

Row 2

Row 1

Row 3

Row 4

Note that rows in tables have no implicit order; the 1, 2, 3, 4 is just for
demonstration purposes.

Tables - columns
id INTEGER code TEXT name TEXTid INTEGER created DATE

Schemas

● The overall design of a database – the way
that data is split between different tables – is
called the database schema

● Tables are logically grouped together in
namespaces that are also, confusingly, called
schemas

– actor schema: org_unit and usr tables

– asset schema: call_number and copy tables

● A fully-qualified table name includes the
schema name: actor.org_unit

Schemas – table groupings

actor

card
org_unit
stat_cat

usr
usr_address

...

asset

call_number
copy

copy_location
stat_cat

uri
...

action

circulation
hold_request

hold_transit_copy
hold_request_note

survey
...

actor

card
org_unit
stat_cat

usr
usr_address

...

config

bib_source
billing_type

circ_modifier
copy_status

identification_type
...

Data types used in Evergreen
Type Description Limits

INTEGER Medium integer -2147483648 to +2147483647

BIGINT Large integer -9223372036854775808 to
9223372036854775807

SERIAL Sequential integer 1 to 2147483647

BIGSERIAL Large sequential
integer

1 to 9223372036854775807

TEXT Variable length
character data

Unlimited

BOOL Boolean TRUE or FALSE

TIMESTAMP WITH
TIME ZONE

Timestamp 4713 BC to 294276 AD

TIME Time Expressed in HH:MM:SS

NUMERIC Decimal Mostly used for money values in
Evergreen

Constraints

● Column constraints ensure that the values in
a given table make sense for the object being
modelled

– Data types are a kind of constraint

– NOT NULL constraints require any value

– Primary key uniquely identifies a row

– Foreign key must have a corresponding value
in another table

– Check constraints place arbitrary
requirements on the value (e.g. ZIP code)

Sequences

● Sequences are often used to provide a
synthetic key for a table

● Normally defined as a SERIAL or BIGSERIAL
column

– Type will be INTEGER or BIGINT

– Default value of that column will be associated
with a sequence object

● If you insert a non-default value for a
sequence, subsequent INSERT statements
may fail until the sequence is clear

Simple relational example

psql client

● \h for SQL statement help
● \? for psql command help
● Tab completion and readline support
● \d commands describe database objects

– \d - tables and views

– \dn - schemas

– \df - functions

Let's explore the Evergreen
schema

● Goal: tell me about the actor.card table
– How many columns, of what type?

– What kind of constraints are on each column?

– Are there any relationships to other tables?

● Goal: tell me about the actor.usr table
● Goal: tell me about the actor.org_unit table

The SELECT statement

● The SELECT statement selects one or more
column values from a set of data

● SQL 101:

● * means “select all columns from the set”
● actor.usr is the schema-qualified table name

that forms the set of data

SELECT * FROM actor.usr;

Selecting specific columns

● Name the columns you want, separated by
commas

● If the column name is unambiguous, you can
drop the schema & table qualifiers:

SELECT actor.usr.first_given_name, actor.usr.family_name
 FROM actor.usr;

SELECT first_given_name, family_name
 FROM actor.usr;

Sorting rows: ORDER BY

● If you want the rows returned in a particular
order, use the ORDER BY clause to identify
the columns to sort the results by in
ascending or descending order

● You can also use the column number instead
of the column name; useful when the column
has no name!

SELECT first_given_name, family_name
 FROM actor.usr
 ORDER BY family_name, first_given_name DESC;

Filtering rows: WHERE clause

● Specify one or more conditions in the
WHERE clause to exclude rows from the
results

● Conditions can be connected with AND, OR,
and NOT; parentheses group conditions

SELECT first_given_name, family_name
 FROM actor.usr
 WHERE family_name = 'System Account';

SELECT first_given_name, family_name
 FROM actor.usr
 WHERE family_name = 'System Account'
 AND first_given_name = 'Administrator';

WHERE clause operators

● The WHERE clause supports a number of
comparison operators:

– x = y (x is equal to y)

– x != y (x is not equal to y)

– x < y (x is less than y)

– x > y (x is greater than y)

– x IN (a, b, c) (x matches one of a, b, or c)

– x ~ '<regex>' (x matches a regular expression)

WHERE clause operators (2)

– x BETWEEN a AND b (syntactic sugar for x
>= a AND x <= b)

– x LIKE 'a%x_z' (text pattern match)

– x ILIKE 'a%x_z' (case-insensitive text pattern
match)

● % wildcard matches zero or more characters
● _ - wildcard matches exactly one character

SELECT * FROM actor.usr WHERE first_given_name = 'Admin%istrator';
– 1 row
SELECT * FROM actor.usr WHERE first_given_name = 'Admin_istrator';
– 0 rows

NULL values

● A NULL value is not an empty string, or a 0 – it
is a non-value; use the IS NULL or IS NOT
NULL comparison operators

● NULL values will throw curves at you!
– NULL never matches any other value, even

other NULL values

– Concatenating a NULL always returns NULL

SELECT first_given_name, family_name
 FROM actor.usr
 WHERE second_given_name IS NULL;

Text delimiter: '

● TEXT values are delimited by single quotes
(')

● To use a single quote inside a TEXT value,
escape the single quote by prepending
another single quote to it:

SELECT first_given_name, family_name
 FROM actor.usr
 WHERE family_name IS 'L''estat';

Grouping results: GROUP BY

● The GROUP BY clause returns a unique set
of results for the grouped columns:

SELECT ou_type
 FROM actor.org_unit
 ORDER BY ou_type;
 ou_type

 1
 2
 2
 3
 3
 3
 3
 4
 5
(9 rows)

SELECT ou_type,
COUNT(ou_type)
 FROM actor.org_unit
 GROUP BY ou_type
 ORDER BY ou_type;

 ou_type | count
---------+-------
 1 | 1
 2 | 2
 3 | 4
 4 | 1
 5 | 1
(5 rows)

Filtering grouped rows: HAVING

● While the WHERE clause filters individual
rows, the HAVING clause filters rows based
on an aggregate function:

SELECT ou_type, COUNT(ou_type)
 FROM actor.org_unit
 GROUP BY ou_type
 HAVING COUNT(ou_type) > 1;

 ou_type | count
---------+-------
 3 | 4
 2 | 2
(2 rows)

Eliminating duplicates: DISTINCT

● Use the DISTINCT operator to eliminate
duplicate rows from your results:

SELECT DISTINCT ou_type
FROM actor.org_unit
ORDER BY ou_type;

 ou_type

 1
 2
 3
 4
 5
(5 rows)

Eliminating: DISTINCT ON ()

● The DISTINCT ON () operator eliminates
duplicate sets of one or more column values;
must match ORDER BY column order

SELECT DISTINCT ON (ou_type) name
 FROM actor.org_unit
 ORDER BY ou_type;

 name

 Example Consortium
 Example System 1
 Example Branch 1
 Example Sub-library 1
 Example Bookmobile 1
(5 rows)

● The LIMIT clause specifies the maximum
number of rows to return from the complete
result set

● The OFFSET clause specifies how far to
advance in the result set before returning the
first row

● This example would return 5 or fewer rows,
starting at the 10th row of the result set

Paging: LIMIT / OFFSET

SELECT * FROM actor.usr LIMIT 5 OFFSET 10;

Exercises

1) List all of the values for the first ten users, by
create date, in the system.

2) List the first name and last name of the 10th
through 20th users, ordered by last name,
whose home library is set to Example Branch 1.

3) List each library with a count of the number of
users per library who have not been deleted.

4) List the email address and user name of all
active users with a last name of “Scott” or
“Smith”.

JOINed at the hip

● You need to master joins to be able to work
effectively with data from multiple tables. A join
always brings two sets of data together

● If you're joining 10 tables, you're still working
with two sets of data at a time; the sets on the
left-hand side are just getting bigger and
bigger each time.

● The INNER JOIN is the easiest join to master;
it returns rows only if both the left-hand table
and right-hand table match the join condition.

INNER JOIN

id usrname

1 Frank

2 Carol

3 Bob

usr title value

2 Hey! This is a note

4 Ho ho ho Loves XMAS

10 Curses Foul mouth

20 Buffy BTVS

SELECT au.usrname, aun.title
 FROM actor.usr au INNER JOIN actor.usr_note aun
 ON au.id = aun.usr;

 usrname title
---------+-------
Carol Hey!
(1 rows)

INNER JOIN practice

1) List the user name, email address, and home
library name for the first 10 users in order of
last name (Z to A)

2) List the barcodes for all users who have a
home library of Example Branch 1.

3) Count the number of circ transactions for
users who have a home library with the short
name BR1.

OUTER JOIN

● An outer join returns NULL values for all
columns in rows that do not match the join
condition

● There are three kinds of outer join:
– The left outer join returns all rows from the left-

hand table

– The right outer join returns all rows from the
right-hand table

– The full outer join returns all rows from the left-
hand table and the right-hand table

OUTER JOIN practice

● List the user name, family name, and any
user notes for all users in the system whether
or not they have user notes attached to their
account (first 100 results only).

Some handy functions

● string1 || string2 - || concatenates two strings
together; if one string is NULL, then a NULL is
returned instead

● coalesce(value 1, value2) – returns the first
non-NULL value

● trim() - removes spaces by default from the
start and end of a string

● upper() - changes a string to upper case
● lower() - changes a string to lower case
●

Set operators

● UNION – adds the set of rows from the right-
hand table to the left-hand table

● INTERSECT – returns the rows that exist in
both the left-hand and right-hand tables

● EXCEPT – returns the rows from the left-
hand table that do not exist in the right-hand
table

Day 2 agenda

● 9:00 – 10:00: SELECT refresher exercises
● 10:00 – 10:30: Subqueries
● 10:30 – 11:00: Common table expressions
● 11:00 – 12:00: Views
● 12:30 – 1:30: INSERTing data
● 1:30 – 2:00: DELETEing data
● 2:00 – 2:30: UPDATEing data

Refreshers

1)List the schema names starting with meta

2)List the table names starting with meta

3)List the record #, indicators, and value for
rows in metabib.full_rec with a tag of '245', a
subfield of 'a', and a value containing
'mozart'

4)List the date of creation for the records
returned in query # 3

Subqueries

● A subquery is a complete SELECT statement
that you can use to replace hard-coded values

– Such as an IN (a, b, c) clause

– Or a complete table in a JOIN clause

● Wrap the SELECT statement in ()
● To act as a table, append AS query­name (which

functions as a table name)
● Subqueries can be nested for maximum

confusion!

Subquery in an IN() clause

SELECT create_date
FROM biblio.record_entry
WHERE id IN (
 SELECT record
 FROM metabib.full_rec
 WHERE tag = '245'
 AND subfield = 'a'
 AND value ~ 'mozart'
);

Subquery in a JOIN clause

SELECT bre.create_date
FROM biblio.record_entry bre
 INNER JOIN (
 SELECT record, ind1, ind2, value
 FROM metabib.full_rec
 WHERE tag = '245'
 AND subfield = 'a'
 AND value ~ 'mozart'
) AS mozart
ON mozart.record = bre.id;

Nested subqueries

SELECT id, create_date
FROM biblio.record_entry
WHERE id IN (
 SELECT record
 FROM asset.call_number acn
 WHERE acn.id IN (
 SELECT call_number
 FROM asset.copy ac
 WHERE ac.id IN (
 SELECT target_copy
 FROM action.circulation
)
)
);

Subquery exercises

● Create a unique list of the shortnames of
libraries that have users with a family name
starting with 'S'

● List the barcodes for books that have
circulated at the library with shortname 'BR3'
with a duration of 1 hour

JOINs rule!

SELECT bre.id, bre.create_date
FROM biblio.record_entry bre
 INNER JOIN asset.call_number acn
 ON acn.record = bre.id
 INNER JOIN asset.copy ac
 ON ac.call_number = acn.id
 INNER JOIN action.circulation acirc
 ON ac.id = acirc.target_copy
­­ GROUP BY bre.id, acirc.xact_start
­­ ORDER BY acirc.xact_start DESC
­­ LIMIT 10
­­ Concise SQL means bonus statements!
;

Common table expressions (CTEs)

● Define CTEs via a leading WITH clause
● One or more leading subqueries that you can

then reference in the rest of the statement
● Useful for clarity, if you need a complicated

subquery for an IN clause or JOIN condition
● Beware: results go into temporary tables, so

large CTEs can impact performance

WITH a basic CTE

WITH records AS (
 SELECT record
 FROM asset.call_number acn
 WHERE acn.owning_lib IN (
 SELECT id
 FROM actor.org_unit
 WHERE shortname = 'BR1'
)
)
SELECT id, create_date
FROM biblio.record_entry bre
 INNER JOIN records
ON records.record = bre.id
;

WITH multiple CTEs

WITH libs AS (
 SELECT id
 FROM actor.org_unit
 WHERE shortname = 'BR1'
), records AS (
 SELECT record
 FROM asset.call_number acn
 INNER JOIN libs ON libs.id = acn.owning_lib
)
SELECT id, create_date
FROM biblio.record_entry bre
 INNER JOIN records
ON records.record = bre.id
;

CTE exercises

● Create a unique list of the shortnames of
libraries that have users with a family name
starting with 'S'

● List the barcodes for books that have
circulated at the library with shortname 'BR3'
with a duration of 1 hour

● Yes, these should look familiar :)

Views

● A view is a stored SELECT statement with a
name that acts like a read-only table

– Views can be arbitrarily complex and
participate in JOINs just like a real table

– Excellent means of capturing knowledge and
simplifying queries

CREATE VIEW view­name AS SELECT ...;

Viewing views (continued)

● To view a view definition in psql, use the \d+
command:

\d+ reporter.circ_type
 View "reporter.circ_type"
 Column | Type | Modifiers | Storage | Description
­­­­­­­­+­­­­­­­­+­­­­­­­­­­­+­­­­­­­­­­+­­­­­­­­­­­­­
 id | bigint | | plain |
 type | text | | extended |
View definition:
 SELECT circulation.id,
 CASE WHEN circulation.opac_renewal OR
circulation.phone_renewal OR circulation.desk_renewal
THEN 'RENEWAL'::text
 ELSE 'CHECKOUT'::text
 END AS type
 FROM action.circulation;

Creating views

● Create a variation of the circ_type view:
CREATE VIEW newview AS
 SELECT circulation.id,
 CASE
 WHEN circulation.opac_renewal OR
circulation.phone_renewal OR circulation.desk_renewal
 THEN 'RENEWAL'::text
 ELSE 'CHECKOUT'::text
 END AS type
 FROM action.circulation;

View exercises

1)Create a view that lists the barcode, library
short name, and circulation duration for all
books

2)Then use that view in a query to count the
number of books that circulated from the
library with short name 'BR4' with a duration
of 1 hour

Modifying data

INSERT, UPDATE, DELETE
And functions

First: a word about transactions

● A transaction enables you to undo any
changes you have made to the database

● Begin with a BEGIN statement to signal the
start of the transaction

● Issue as many INSERT/ UPDATE/ DELETE/
ALTER statements as you like

● Then decide whether you want to COMMIT
your work, or ROLLBACK your work

COPY data

● Fastest means of getting data into
PostgreSQL:

COPY asset.copy_location(name, owning_lib)
FROM STDIN;
Storage ­> 4
Newspaper room ­> 5
\.

● Or from a file:
COPY asset.copy_location(name, owning_lib)
FROM '/path/to/file.tsv';

INSERT statements

● Basic INSERT statement
INSERT INTO table (column, column, …)
VALUES (value, value, ...)[, (...)];

● You can also insert one or more rows via a
SELECT statement:

INSERT INTO table (column, column, …)
SELECT column, column, … FROM table2 …

INSERT (continued)

● You can specify DEFAULT for any column value
to use the table's defined default value

– If you do not include the column in your
INSERT clause, it supplies the default value

– If there is no default defined - ERROR

● A common data loading approach:
– COPY (bulk-load) data into a staging table

– Munge the data via UPDATEs

– INSERT...SELECT to insert the data into the
production table

INSERT exercises

● Insert two new rows into the table
asset.copy_location, with an owning library of
4 and names 'Reserves' and 'Storage'

● For each row in actor.usr with family_name
beginning with 'S', insert a row into
actor.usr_note with:

– title = 'S name', value = the family_name
value, creator = 1, and public = TRUE

DELETE statements

● DELETE FROM table WHERE condition;

● Warning: if you fail to give a condition, the
DELETE statement will happily delete all rows
from the table

● Delete operations are restricted by relational
constraints

● In Evergreen, rules often change a DELETE
operation to just set the deleted column to true

DELETE exercises

● For each of the following, use a transaction to
make and then rollback your changes:

– DELETE all rows from the actor.usr table.
What happens?

– DELETE all rows from the action.circulation
table, SELECT * from action.circulation.
What happens?

● ROLLBACK the transaction and SELECT
again. What happens?

– DELETE FROM actor.usr WHERE id = 15;
● What happens?

UPDATE statement

● UPDATE table
 SET column = value, column = value, ...
 WHERE condition;

● The UPDATE statement is an odd duck
because it almost forces you to rely on
subquries instead of joins

UPDATE exercises

● For each of the following, use a transaction to
make and then rollback your changes:

– Set all middle names in the user table to
NULL where they are currently an empty
string.

– Set the email address for every user to their
user name @example.org.

– Set the user name for every user to their
barcode from actor.card.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

