Introduction to SQL for Evergreen administrators

Dan Scott
<dan@coffeecode.net>

	Revision History
	Revision 2.9	February 2012	DS

1. Preface

This tutorial is intended primarily for people working with Evergreen who want
to dig into the database that powers Evergreen, and who have little familiarity
with SQL or the PostgreSQL database in particular. If you are already
comfortable with SQL, this tutorial will help point you to the implementation
quirks and features of PostgreSQL. If you are already familiar with both SQL
and PostgreSQL, this tutorial will help you navigate the Evergreen schema.

2. Part 1: Introduction to SQL Databases

2.1. Learning objectives

	
Understand how tables organize data into columns and rows

	
Understand how schemas organize tables and other database objects

	
Understand the properties of the most common data types used in
 Evergreen

	
Understand table constraints, including unique constraints,
 referential constraints, NULL constraints, and check constraints

	
Display a table definition using the psql command line tool

2.2. Introduction

Over time, the SQL database has become the standard method of storing,
retrieving, and processing raw data for applications. Ranging from embedded
databases such as SQLite and Apache Derby, to enterprise databases such as
Oracle and IBM DB2, any SQL database offers basic advantages to application
developers such as standard interfaces (Structured Query Language (SQL), Java
Database Connectivity (JDBC), Open Database Connectivity (ODBC), Perl Database
Independent Interface (DBI)), a standard conceptual model of data (tables,
fields, relationships, constraints, etc), performance in storing and retrieving
data, concurrent access, etc.
Evergreen is built on PostgreSQL, an open source SQL database that began as
POSTGRES at the University of California at Berkeley in 1986 as a research
project led by Professor Michael Stonebraker. A SQL interface was added to a
fork of the original POSTGRES Berkelely code in 1994, and in 1996 the project
was renamed PostgreSQL.

2.3. Tables

The table is the cornerstone of a SQL database. Conceptually, a database table
is similar to a single sheet in a spreadsheet: every table has one or more
columns, with each row in the table containing values for each column. Each
column in a table defines an attribute corresponding to a particular data type.
We’ll insert a row into a table, then display the resulting contents. Don’t
worry if the INSERT statement is completely unfamiliar, we’ll talk more about
the syntax of the insert statement later.
actor.usr_note database table.

evergreen=# INSERT INTO actor.usr_note (usr, creator, pub, title, value)
 VALUES (1, 1, TRUE, 'Who is this guy?', 'He''s the administrator!');

evergreen=# select id, usr, creator, pub, title, value from actor.usr_note;
 id | usr | creator | pub | title | value
----+-----+---------+-----+------------------+-------------------------
 1 | 1 | 1 | t | Who is this guy? | He's the administrator!
(1 rows)

PostgreSQL supports table inheritance, which lets you define tables that
inherit the column definitions of a given parent table. A search of the data in
the parent table includes the data in the child tables. Evergreen uses table
inheritance: for example, the action.circulation table is a child of the
money.billable_xact table, and the money.*_payment tables all inherit from
the money.payment parent table.

2.4. Schemas

PostgreSQL, like most SQL databases, supports the use of schema names to group
collections of tables and other database objects together. You might think of
schemas as namespaces if you’re a programmer; or you might think of the schema
/ table / column relationship like the area code / exchange / local number
structure of a telephone number.
Table 1. Examples: database object names
	Full name 	Schema name 	Table name 	Field name
	actor.usr_note.title
	actor
	usr_note
	title

	biblio.record_entry.marc
	biblio
	record_entry
	marc

The default schema name in PostgreSQL is public, so if you do not specify a
schema name when creating or accessing a database object, PostgreSQL will use
the public schema. As a result, you might not find the object that you’re
looking for if you don’t use the appropriate schema.
Example: Creating a table without a specific schema.

evergreen=# CREATE TABLE foobar (foo TEXT, bar TEXT);
CREATE TABLE
evergreen=# \d foobar
 Table "public.foobar"
 Column | Type | Modifiers
--------+------+-----------
 foo | text |
 bar | text |

Example: Trying to access a unqualified table outside of the public schema.

evergreen=# SELECT * FROM usr_note;
ERROR: relation "usr_note" does not exist
LINE 1: SELECT * FROM usr_note;
 ^

Evergreen uses schemas to organize all of its tables with mostly intuitive,
if short, schema names. Here’s the current (as of 2012-01-23) list of schemas
used by Evergreen:
Table 2. Evergreen schema names
	Schema name 	Description
	acq
	Acquisitions

	action
	Circulation actions

	action_trigger
	Event mechanisms

	actor
	Evergreen users and organization units

	asset
	Call numbers and copies

	auditor
	Track history of changes to selected tables

	authority
	Authority records

	biblio
	Bibliographic records

	booking
	Resource bookings

	config
	Evergreen configurable options

	container
	Buckets for records, call numbers, copies, and users

	extend_reporter
	Extra views for report definitions

	metabib
	Metadata about bibliographic records

	money
	Fines and bills

	offline
	Offline transactions

	permission
	User permissions

	query
	Stored SQL statements

	reporter
	Report definitions

	search
	Search functions

	serial
	Serial MFHD records

	staging
	User records prior to approval

	stats
	Convenient views of circulation and asset statistics

	unapi
	Metadata formats

	vandelay
	MARC batch importer and exporter

Note
The term schema has two meanings in the world of SQL databases. We have
discussed the schema as a conceptual grouping of tables and other database
objects within a given namespace; for example, "the actor schema contains the
tables and functions related to users and organizational units". Another common
usage of schema is to refer to the entire data model for a given database;
for example, "the Evergreen database schema".

2.5. Columns

Each column definition consists of:
	
a data type

	
(optionally) a default value to be used whenever a row is inserted that
 does not contain a specific value

	
(optionally) one or more constraints on the values beyond data type

Although PostgreSQL supports dozens of data types, Evergreen makes our life
easier by only using a handful.
Table 3. PostgreSQL data types used by Evergreen
	Type name 	Description 	Limits
	INTEGER
	Medium integer
	-2147483648 to +2147483647

	BIGINT
	Large integer
	-9223372036854775808 to 9223372036854775807

	SERIAL
	Sequential integer
	1 to 2147483647

	BIGSERIAL
	Large sequential integer
	1 to 9223372036854775807

	TEXT
	Variable length character data
	Unlimited length

	BOOL
	Boolean
	TRUE or FALSE

	TIMESTAMP WITH TIME ZONE
	Timestamp
	4713 BC to 294276 AD

	TIME
	Time
	Expressed in HH:MM:SS

	NUMERIC(precision, scale)
	Decimal
	Up to 1000 digits of precision. In Evergreen mostly used for money
values, with a precision of 6 and a scale of 2 (####.##).

	HSTORE
	Key-value pairs
	

Full details about these data types are available from the
data types section of
the PostgreSQL manual.

2.6. Constraints

Prevent NULL values

A column definition may include the constraint NOT NULL to prevent NULL
values. In PostgreSQL, a NULL value is not the equivalent of zero or false or
an empty string; it is an explicit non-value with special properties. We’ll
talk more about how to work with NULL values when we get to queries.

Primary key

Every table can have at most one primary key. A primary key consists of one or
more columns which together uniquely identify each row in a table. If you
attempt to insert a row into a table that would create a duplicate or NULL
primary key entry, the database rejects the row and returns an error.
Natural primary keys are drawn from the intrinsic properties of the data being
modelled. For example, some potential natural primary keys for a table that
contains people would be:
Table 4. Example: Some potential natural primary keys for a table of people
	Natural key 	Pros 	Cons
	First name, last name, address
	No two people with the same name would ever live at the same address, right?
	Lots of columns force data duplication in referencing tables

	SSN or driver’s license
	These are guaranteed to be unique
	Lots of people don’t have an SSN or a driver’s license

To avoid problems with natural keys, many applications instead define surrogate
primary keys. A surrogate primary keys is a column with an autoincrementing
integer value added to a table definition that ensures uniqueness.
Evergreen uses surrogate keys (a column named id with a SERIAL data type)
for most of its tables.

Foreign keys

Every table can contain zero or more foreign keys: one or more columns that
refer to the primary key of another table.
For example, let’s consider Evergreen’s modelling of the basic relationship
between copies, call numbers, and bibliographic records. Bibliographic records
contained in the biblio.record_entry table can have call numbers attached to
them. Call numbers are contained in the asset.call_number table, and they can
have copies attached to them. Copies are contained in the asset.copy table.
Table 5. Example: Evergreen’s copy / call number / bibliographic record relationships
	Table 	Primary key 	Column with a foreign key 	Points to
	asset.copy
	asset.copy.id
	asset.copy.call_number
	asset.call_number.id

	asset.call_number
	asset.call_number.id
	asset.call_number.record
	biblio.record_entry.id

	biblio.record_entry
	biblio.record_entry.id
	
	

Check constraints

PostgreSQL enables you to define rules to ensure that the value to be inserted
or updated meets certain conditions. For example, you can ensure that an
incoming integer value is within a specific range, or that a ZIP code matches a
particular pattern.

2.7. Deconstructing a table definition statement

The actor.org_address table is a simple table in the Evergreen schema that
we can use as a concrete example of many of the properties of databases that
we have discussed so far.
CREATE TABLE actor.org_address (
 id SERIAL PRIMARY KEY, -- (1)
 valid BOOL NOT NULL DEFAULT TRUE, -- (2)
 address_type TEXT NOT NULL DEFAULT 'MAILING', -- (3)
 org_unit INT NOT NULL REFERENCES actor.org_unit (id) -- (4)
 DEFERRABLE INITIALLY DEFERRED,
 street1 TEXT NOT NULL,
 street2 TEXT, -- (5)
 city TEXT NOT NULL,
 county TEXT,
 state TEXT NOT NULL,
 country TEXT NOT NULL,
 post_code TEXT NOT NULL
);
	(1)
	
The column named id is defined with a special data type of SERIAL; if
given no value when a row is inserted into a table, the database automatically
generates the next sequential integer value for the column. SERIAL is a
popular data type for a primary key because it is guaranteed to be unique - and
indeed, the constraint for this column identifies it as the PRIMARY KEY.

	(2)
	
The data type BOOL defines a boolean value: TRUE or FALSE are the only
acceptable values for the column. The constraint NOT NULL instructs the
database to prevent the column from ever containing a NULL value. The column
property DEFAULT TRUE instructs the database to automatically set the value
of the column to TRUE if no value is provided.

	(3)
	
The data type TEXT defines a text column of practically unlimited length.
As with the previous column, there is a NOT NULL constraint, and a default
value of 'MAILING' will result if no other value is supplied.

	(4)
	
The REFERENCES actor.org_unit (id) clause indicates that this column has a
foreign key relationship to the actor.org_unit table, and that the value of
this column in every row in this table must have a corresponding value in the
id column in the referenced table (actor.org_unit).

	(5)
	
The column named street2 demonstrates that not all columns have constraints
beyond data type. In this case, the column is allowed to be NULL or to contain a
TEXT value.

2.8. Displaying a table definition using psql

The psql command-line interface is the preferred method for accessing
PostgreSQL databases. It offers features like tab-completion, readline support
for recalling previous commands, flexible input and output formats, and
is accessible via a standard SSH session.
If you press the Tab key once after typing one or more characters of the
database object name, psql automatically completes the name if there are no
other matches. If there are other matches for your current input, nothing
happens until you press the Tab key a second time, at which point psql
displays all of the matches for your current input.
To display the definition of a database object such as a table, issue the
command \d _object-name_. For example, to display the definition of the
actor.usr_note table:
$ psql evergreen # (1)
psql (9.1.2)
Type "help" for help.

evergreen=# \d actor.usr_note (2)
 Table "actor.usr_note"
 Column | Type | Modifiers
-------------+--------------------------+---
 id | bigint | not null default nextval('actor.usr_note_id_seq'::regclass)
 usr | bigint | not null
 creator | bigint | not null
 create_date | timestamp with time zone | default now()
 pub | boolean | not null default false
 title | text | not null
 value | text | not null
Indexes:
 "usr_note_pkey" PRIMARY KEY, btree (id)
 "actor_usr_note_creator_idx" btree (creator)
 "actor_usr_note_usr_idx" btree (usr)
Foreign-key constraints:
 "usr_note_creator_fkey" FOREIGN KEY (creator) REFERENCES actor.usr(id) ON DELETE CASCADE DEFERRABLE INITIALLY DEFERRED
 "usr_note_usr_fkey" FOREIGN KEY (usr) REFERENCES actor.usr(id) ON DELETE CASCADE DEFERRABLE INITIALLY DEFERRED

evergreen=# \q (3)
$
	(1)
	
This is the most basic connection to a PostgreSQL database. You can use a
number of other flags to specify user name, hostname, port, and other options.

	(2)
	
The \d command displays the definition of a database object.

	(3)
	
The \q command quits the psql session and returns you to the shell prompt.

3. Part 2: Basic SQL queries

3.1. Learning objectives

	
Understand how to select specific columns from one table

	
Understand how to filter results with the WHERE clause

	
Understand how to specify the order of results using the ORDER BY clause

	
Understand how to group and eliminate results with the GROUP BY and HAVING clauses

	
Understand how to restrict the number of results using the LIMIT clause

3.2. The SELECT statement

The SELECT statement is the basic tool for retrieving information from a
database. The syntax for most SELECT statements is:
SELECT [columns(s)]

 FROM [table(s)]

 [WHERE condition(s)]

 [GROUP BY columns(s)]

 [HAVING grouping-condition(s)]

 [ORDER BY column(s)]

 [LIMIT maximum-results]

 [OFFSET start-at-result-#]

;

For example, to select all of the columns for each row in the
actor.usr_address table, issue the following query:
SELECT *
 FROM actor.usr_address
;

3.3. Selecting particular columns from a table

SELECT * returns all columns from all of the tables included in your query.
However, quite often you will want to return only a subset of the possible
columns. You can retrieve specific columns by listing the names of the columns
you want after the SELECT keyword. Separate each column name with a comma.
For example, to select just the city, county, and state from the
actor.usr_address table, issue the following query:
SELECT city, county, state
 FROM actor.usr_address
;

3.4. Sorting results with the ORDER BY clause

By default, a SELECT statement returns rows matching your query with no
guarantee of any particular order in which they are returned. To force
the rows to be returned in a particular order, use the ORDER BY clause
to specify one or more columns to determine the sorting priority of the
rows.
For example, to sort the rows returned from your actor.usr_address query by
city, with county and then zip code as the tie breakers, issue the
following query:
SELECT city, county, state
 FROM actor.usr_address
 ORDER BY city, county, post_code
;

3.5. Filtering results with the WHERE clause

Thus far, your results have been returning all of the rows in the table.
Normally, however, you would want to restrict the rows that are returned to the
subset of rows that match one or more conditions of your search. The WHERE
clause enables you to specify a set of conditions that filter your query
results. Each condition in the WHERE clause is an SQL expression that returns
a boolean (true or false) value.
For example, to restrict the results returned from your actor.usr_address
query to only those rows containing a state value of Connecticut, issue the
following query:
SELECT city, county, state
 FROM actor.usr_address
 WHERE state = 'Connecticut'
 ORDER BY city, county, post_code
;
You can include more conditions in the WHERE clause with the OR and AND
operators. For example, to further restrict the results returned from your
actor.usr_address query to only those rows where the state column contains a
value of Connecticut and the city column contains a value of Hartford,
issue the following query:
SELECT city, county, state
 FROM actor.usr_address
 WHERE state = 'Connecticut'
 AND city = 'Hartford'
 ORDER BY city, county, post_code
;
Note
To return rows where the state is Connecticut and the city is Hartford or
New Haven, you must use parentheses to explicitly group the city value
conditions together, or else the database will evaluate the OR city = 'New
Haven' clause entirely on its own and match all rows where the city column is
New Haven, even though the state might not be Connecticut.

Trouble with OR.

SELECT city, county, state
 FROM actor.usr_address
 WHERE state = 'Connecticut'
 AND city = 'Hartford' OR city = 'New Haven'
 ORDER BY city, county, post_code
;

-- Can return unwanted rows because the OR is not grouped!

Grouped OR’ed conditions.

SELECT city, county, state
 FROM actor.usr_address
 WHERE state = 'Connecticut'
 AND (city = 'Hartford' OR city = 'New Haven')
 ORDER BY city, county, post_code
;

-- The parentheses ensure that the OR is applied to the cities, and the
-- state in either case must be 'Connecticut'

Comparison operators

Here is a partial list of comparison operators that are commonly used in
WHERE clauses:
Comparing two scalar values

	
x = y (equal to)

	
x != y (not equal to)

	
x < y (less than)

	
x > y (greater than)

	
x LIKE y (TEXT value x matches a subset of TEXT y, where y is a string that
can contain % as a wildcard for 0 or more characters, and _ as a wildcard
for a single character. For example, WHERE 'all you can eat fish and chips
and a big stick' LIKE '%fish%stick' would return TRUE)

	
x ILIKE y (like LIKE, but the comparison ignores upper-case / lower-case)

	
x ~ y (x matches the regular expression y;
 regular expressions are extremely
 powerful but would require another tutorial entirely!)

	
x IN y (x is in the list of values y, where y can be a list or a SELECT
 statement that returns a list)

IN clause examples.

SELECT usr
 FROM actor.usr_address
 WHERE state = 'Ohio'
 AND city IN ('Columbus', 'Lancaster', 'Springfield')
;

SELECT id, usrname
 FROM actor.usr
 WHERE family_name = 'Bandy'
 AND id IN (
 SELECT usr
 FROM actor.usr_address
 WHERE state = 'Ohio'
 AND city in ('Columbus', 'Lancaster', 'Springfield')
)
;

3.6. NULL values

SQL databases have a special way of representing the value of a column that has
no value: NULL. A NULL value is not equal to zero, and is not an empty
string; it is equal to nothing, not even another NULL, because it has no value
that can be compared.
To return rows from a table where a given column is not NULL, use the
IS NOT NULL comparison operator.
Retrieving rows where a column is not NULL.

SELECT id, first_given_name, family_name
 FROM actor.usr
 WHERE second_given_name IS NOT NULL
;

Similarly, to return rows from a table where a given column is NULL, use
the IS NULL comparison operator.
Retrieving rows where a column is NULL.

SELECT id, first_given_name, second_given_name, family_name
 FROM actor.usr
 WHERE second_given_name IS NULL
;

 id | first_given_name | second_given_name | family_name
----+------------------+-------------------+----------------
 1 | Administrator | | System Account
(1 row)

Notice that the NULL value in the output is displayed as empty space,
indistinguishable from an empty string; this is the default display method in
psql. You can change the behaviour of psql using the pset command:
Changing the way NULL values are displayed in psql.

evergreen=# \pset null '(null)'
Null display is '(null)'.

SELECT id, first_given_name, second_given_name, family_name
 FROM actor.usr
 WHERE second_given_name IS NULL
;

 id | first_given_name | second_given_name | family_name
----+------------------+-------------------+----------------
 1 | Administrator | (null) | System Account
(1 row)

Database queries within programming languages such as Perl and C have
special methods of checking for NULL values in returned results.

3.7. Text delimiter: '

You might have noticed that we have been using the ' character to delimit
TEXT values and values such as dates and times that are TEXT values. Sometimes,
however, your TEXT value itself contains a ' character, such as the word
you’re. To prevent the database from prematurely ending the TEXT value at the
first ' character and returning a syntax error, use another ' character to
escape the following ' character.
For example, to change the last name of a user in the actor.usr table to
L’estat, issue the following SQL:
Escaping ' in TEXT values.

UPDATE actor.usr
 SET family_name = 'L''estat'
 WHERE profile IN (
 SELECT id
 FROM permission.grp_tree
 WHERE name = 'Vampire'
)
;

When you retrieve the row from the database, the value is displayed with just
a single ' character:
SELECT id, family_name
 FROM actor.usr
 WHERE family_name = 'L''estat'
;

 id | family_name
----+-------------
 1 | L'estat
(1 row)

3.8. Grouping and eliminating results with the GROUP BY and HAVING clauses

The GROUP BY clause returns a unique set of results for the desired columns.
This is most often used in conjunction with an aggregate function to present
results for a range of values in a single query, rather than requiring you to
issue one query per target value.
Returning unique results of a single column with GROUP BY.

SELECT grp
 FROM permission.grp_perm_map
 GROUP BY grp
 ORDER BY grp;

 grp
-----+
 1
 2
 3
 4
 5
 6
 7
 10
(8 rows)

While GROUP BY can be useful for a single column, it is more often used
to return the distinct results across multiple columns. For example, the
following query shows us which groups have permissions at each depth in
the library hierarchy:
Returning unique results of multiple columns with GROUP BY.

SELECT grp, depth
 FROM permission.grp_perm_map
 GROUP BY grp, depth
 ORDER BY depth, grp;

 grp | depth
-----+-------
 1 | 0
 2 | 0
 3 | 0
 4 | 0
 5 | 0
 10 | 0
 3 | 1
 4 | 1
 5 | 1
 6 | 1
 7 | 1
 10 | 1
 3 | 2
 4 | 2
 10 | 2
(15 rows)

Extending this further, you can use the COUNT() aggregate function to
also return the number of times each unique combination of grp and depth
appears in the table. Yes, this is a sneak peek at the use of aggregate
functions! Keeners.
Counting unique column combinations with GROUP BY.

SELECT grp, depth, COUNT(grp)
 FROM permission.grp_perm_map
 GROUP BY grp, depth
 ORDER BY depth, grp;

 grp | depth | count
-----+-------+-------
 1 | 0 | 6
 2 | 0 | 2
 3 | 0 | 45
 4 | 0 | 3
 5 | 0 | 5
 10 | 0 | 1
 3 | 1 | 3
 4 | 1 | 4
 5 | 1 | 1
 6 | 1 | 9
 7 | 1 | 5
 10 | 1 | 10
 3 | 2 | 24
 4 | 2 | 8
 10 | 2 | 7
(15 rows)

You can use the WHERE clause to restrict the returned results before grouping
is applied to the results. The following query restricts the results to those
rows that have a depth of 0.
Using the WHERE clause with GROUP BY.

SELECT grp, COUNT(grp)
 FROM permission.grp_perm_map
 WHERE depth = 0
 GROUP BY grp
 ORDER BY 2 DESC
;

 grp | count
-----+-------
 3 | 45
 1 | 6
 5 | 5
 4 | 3
 2 | 2
 10 | 1
(6 rows)

To restrict results after grouping has been applied to the rows, use the
HAVING clause; this is typically used to restrict results based on
a comparison to the value returned by an aggregate function. For example,
the following query restricts the returned rows to those that have more than
5 occurrences of the same value for grp in the table.
GROUP BY restricted by a HAVING clause.

SELECT grp, COUNT(grp)
 FROM permission.grp_perm_map
 GROUP BY grp
 HAVING COUNT(grp) > 5
;

 grp | count
-----+-------
 6 | 9
 4 | 15
 5 | 6
 1 | 6
 3 | 72
 10 | 18
(6 rows)

3.9. Eliminating duplicate results with the DISTINCT keyword

GROUP BY is one way of eliminating duplicate results from the rows returned
by your query. The purpose of the DISTINCT keyword is to remove duplicate
rows from the results of your query. However, it works, and it is easy - so if
you just want a quick list of the unique set of values for a column or set of
columns, the DISTINCT keyword might be appropriate.
On the other hand, if you are getting duplicate rows back when you don’t expect
them, then applying the DISTINCT keyword might be a sign that you are
papering over a real problem.
Returning unique results of multiple columns with DISTINCT.

SELECT DISTINCT grp, depth
 FROM permission.grp_perm_map
 ORDER BY depth, grp
;

 grp | depth
-----+-------
 1 | 0
 2 | 0
 3 | 0
 4 | 0
 5 | 0
 10 | 0
 3 | 1
 4 | 1
 5 | 1
 6 | 1
 7 | 1
 10 | 1
 3 | 2
 4 | 2
 10 | 2
(15 rows)

3.10. Paging through results with the LIMIT and OFFSET clauses

The LIMIT clause restricts the total number of rows returned from your query
and is useful if you just want to list a subset of a large number of rows. For
example, in the following query we list the five most frequently used
circulation modifiers:
Using the LIMIT clause to restrict results.

SELECT circ_modifier, COUNT(circ_modifier)
 FROM asset.copy
 GROUP BY circ_modifier
 ORDER BY 2 DESC
 LIMIT 5
;

 circ_modifier | count
---------------+--------
 CIRC | 741995
 BOOK | 636199
 SER | 265906
 DOC | 191598
 LAW MONO | 126627
(5 rows)

When you use the LIMIT clause to restrict the total number of rows returned
by your query, you can also use the OFFSET clause to determine which subset
of the rows will be returned. The use of the OFFSET clause assumes that
you’ve used the ORDER BY clause to impose order on the results.
In the following example, we use the OFFSET clause to get results 6 through
10 from the same query that we prevously executed.
Using the OFFSET clause to return a specific subset of rows.

SELECT circ_modifier, COUNT(circ_modifier)
 FROM asset.copy
 GROUP BY circ_modifier
 ORDER BY 2 DESC
 LIMIT 5
 OFFSET 5
;

 circ_modifier | count
---------------+--------
 LAW SERIAL | 102758
 DOCUMENTS | 86215
 BOOK_WEB | 63786
 MFORM SER | 39917
 REF | 34380
(5 rows)

4. Part 3: Advanced SQL queries

4.1. Learning objectives

	
Understand the difference between scalar functions and aggregate functions

	
Know how to use functions to transform column values for comparison and
return values

	
Be able to query and retrieve values from HSTORE columns

	
Know how to retrieve values from across multiple tables

	
Understand the difference between inner joins, outer joins, unions, and
intersections

	
Know how to use the WITH clause to simplify a single query

	
Know how to create a view to simplify frequently used queries

Thus far you’ve been working with a single table at a time - and you have
been able accomplish a great deal. However, relational databases by their
nature spread data across multiple tables, so it is important to learn how
to bring that data back together in your queries. In addition, real data
in the wild often requires taming by transforming it to different states so
that you can, for example, compare values more efficiently, or reduce the
number of results, or find the maximum value in a set of results.

4.2. Transforming column values with functions

PostgreSQL includes many built-in functions for manipulating column data.
You can also create your own functions (and Evergreen does make use of
many custom functions). There are two types of functions used in
databases: scalar functions and aggregate functions.
Scalar functions

Scalar functions transform each value of the target column. If your query
would return 50 values for a column in a given query, and you modify your
query to apply a scalar function to the values returned for that column,
it will still return 50 values. For example, the UPPER() function,
used to convert text values to upper-case, modifies the results in the
following set of queries:
Using the UPPER() scalar function to convert text values to upper-case.

-- First, without the UPPER() function for comparison
SELECT shortname, name
 FROM actor.org_unit
 WHERE id < 4
;

 shortname | name
-----------+-----------------------
 CONS | Example Consortium
 SYS1 | Example System 1
 SYS2 | Example System 2
(3 rows)

-- Now apply the UPPER() function to the name column
SELECT shortname, UPPER(name)
 FROM actor.org_unit
 WHERE id < 4
;

 shortname | upper
-----------+--------------------
 CONS | EXAMPLE CONSORTIUM
 SYS1 | EXAMPLE SYSTEM 1
 SYS2 | EXAMPLE SYSTEM 2
(3 rows)

There are so many scalar functions in PostgreSQL that we cannot cover them
all here, but we can list some of the most commonly used functions:
	
|| - concatenates two text values together

	
COALESCE() - returns the first non-NULL value from the list of arguments

	
LOWER() - returns a text value converted to lower-case

Note
Evergreen uses its own custom function, evergreen.lowercase(), to
convert text to lower-case because it uses Perl’s lc() function to do a
better job with Unicode text.

	
REPLACE() - returns a text value after replacing all occurrences of a given
 text value with a different text value

	
REGEXP_REPLACE() - returns a text value after being transformed by a regular expression

	
UPPER() - returns a text value converted to upper-case

For a complete list of scalar functions, see
the PostgreSQL
function documentation.

Aggregate functions

Aggregate functions return a single value computed from the the complete set of
values returned for the specified column. Commonly used aggregate functions
include:
	
AVG()

	
COUNT()

	
MAX()

	
MIN()

	
SUM()

HSTORE columns

The HSTORE data type stores key-value pairs within a single column. You need to
use special functions and operators to create, update, and query HSTORE
columns. In Evergreen, the metarecord.record_attrs table includes an HSTORE
column attrs for attributes from the leader and fixed fields like cataloging
format, audience, and bibliographic level.
To create or update the value for a given key, use the concatenation operator
(||) to concatenate the name of the HSTORE column with the new HSTORE
key-value pair. For example:
Updating an HSTORE column.

UPDATE metabib.record_attr
 SET attrs = attrs || hstore('bib_level', 's')
 WHERE id = 10
;

To retrieve a value from an HSTORE column for a given key, use the ->
operator to specify the name of the key against the HSTORE column. For example,
to retrieve the bibliographic level and audience from the metabib.record_attr
table:
Retrieving values from an HSTORE column.

SELECT id, attrs->'audience' AS audience, attrs->'bib_level' AS bib_level
 FROM metabib.record_attr
 LIMIT 5
;

 id | audience | bib_level
----+----------+-----------
 1 | 0 | m
 2 | f | m
 3 | | m
 4 | | m
 5 | | m
(5 rows)

4.3. Subqueries

A subquery is the technique of using the results of one query to feed
into another query. You can, for example, return a set of values from
one column in a SELECT statement to be used to satisfy the IN() condition
of another SELECT statement; or you could return the MAX() value of a
column in a SELECT statement to match the = condition of another SELECT
statement.
For example, in the following query we use a subquery to restrict the copies
returned by the main SELECT statement to only those locations that have an
opac_visible value of TRUE:
Subquery example.

SELECT call_number
 FROM asset.copy
 WHERE deleted IS FALSE
 AND location IN (
 SELECT id
 FROM asset.copy_location
 WHERE opac_visible IS TRUE
)
;

Subqueries can be an approachable way to breaking down a problem that
requires matching values between different tables, and often result in
a clearly expressed solution to a problem. However, if you start writing
subqueries within subqueries, you should consider tackling the problem
with joins or WITH clauses instead.

4.4. Joins

Joins enable you to access the values from multiple tables in your query
results and comparison operators. For example, joins are what enable you to
relate a bibliographic record to a barcoded copy via the biblio.record_entry,
asset.call_number, and asset.copy tables. In this section, we discuss the
most common kind of join—the inner join—as well as the less common outer join
and some set operations which can compare and contrast the values returned by
separate queries.
When we talk about joins, we are going to talk about the left-hand table and
the right-hand table that participate in the join. Every join brings together
just two tables - but you can use an unlimited (for our purposes) number
of joins in a single SQL statement. Each time you use a join, you effectively
create a new table, so when you add a second join clause to a statement,
table 1 and table 2 (which were the left-hand table and the right-hand table
for the first join) now act as a merged left-hand table and the new table
in the second join clause is the right-hand table.
Clear as mud? Okay, let’s look at some examples.
Inner joins

An inner join returns all of the columns from the left-hand table in the join
with all of the columns from the right-hand table in the joins that match a
condition in the ON clause. Typically, you use the = operator to match the
foreign key of the left-hand table with the primary key of the right-hand
table to follow the natural relationship between the tables.
In the following example, we return all of columns from the actor.usr and
actor.org_unit tables, joined on the relationship between the user’s home
library and the library’s ID. Notice in the results that some columns, like
id and mailing_address, appear twice; this is because both the actor.usr
and actor.org_unit tables include columns with these names. This is also why
we have to fully qualify the column names in our queries with the schema and
table names.
A simple inner join.

SELECT *
 FROM actor.usr
 INNER JOIN actor.org_unit ON actor.usr.home_ou = actor.org_unit.id
 WHERE actor.org_unit.shortname = 'CONS'
;

-[RECORD 1]------------------+---------------------------------
id | 1
card | 1
profile | 1
usrname | admin
email |
...
mailing_address |
billing_address |
home_ou | 1
...
claims_never_checked_out_count | 0
id | 1
parent_ou |
ou_type | 1
ill_address | 1
holds_address | 1
mailing_address | 1
billing_address | 1
shortname | CONS
name | Example Consortium
email |
phone |
opac_visible | t
fiscal_calendar | 1

Of course, you do not have to return every column from the joined tables;
you can (and should) continue to specify only the columns that you want to
return. In the following example, we count the number of borrowers for
every user profile in a given library by joining the permission.grp_tree
table where profiles are defined against the actor.usr table, and then
joining the actor.org_unit table to give us access to the user’s home
library:
Borrower Count by Profile (Adult, Child, etc)/Library.

SELECT permission.grp_tree.name, actor.org_unit.name, COUNT(permission.grp_tree.name)
 FROM actor.usr
 INNER JOIN permission.grp_tree
 ON actor.usr.profile = permission.grp_tree.id
 INNER JOIN actor.org_unit
 ON actor.org_unit.id = actor.usr.home_ou
 WHERE actor.usr.deleted IS FALSE
 GROUP BY permission.grp_tree.name, actor.org_unit.name
 ORDER BY actor.org_unit.name, permission.grp_tree.name
;

 name | name | count
-------+--------------------+-------
 Users | Example Consortium | 1
(1 row)

Aliases

So far we have been fully-qualifying all of our table names and column names to
prevent any confusion. This quickly gets tiring with lengthy qualified
table names like permission.grp_tree, so the SQL syntax enables us to assign
aliases to table names and column names. When you define an alias for a table
name, you can access its column throughout the rest of the statement by simply
appending the column name to the alias with a period; for example, if you assign
the alias au to the actor.usr table, you can access the actor.usr.id
column through the alias as au.id.
The formal syntax for declaring an alias for a column is to follow the column
name in the result columns clause with AS alias. To declare an alias for a table name,
follow the table name in the FROM clause (including any JOIN statements) with
AS alias. However, the AS keyword is optional for tables (and columns as
of PostgreSQL 8.4), and in practice most SQL statements leave it out. For
example, we can write the previous INNER JOIN statement example using aliases
instead of fully-qualified identifiers:
Borrower Count by Profile (using aliases).

SELECT pgt.name AS "Profile", aou.name AS "Library", COUNT(pgt.name) AS "Count"
 FROM actor.usr au
 INNER JOIN permission.grp_tree pgt
 ON au.profile = pgt.id
 INNER JOIN actor.org_unit aou
 ON aou.id = au.home_ou
 WHERE au.deleted IS FALSE
 GROUP BY pgt.name, aou.name
 ORDER BY aou.name, pgt.name
;

 Profile | Library | Count
---------+--------------------+-------
 Users | Example Consortium | 1
(1 row)

A nice side effect of declaring an alias for your columns is that the alias
is used as the column header in the results table. The previous version of
the query, which didn’t use aliased column names, had two columns named
name; this version of the query with aliases results in a clearer
categorization.

Outer joins

An outer join returns all of the rows from one or both of the tables
participating in the join.
	
For a LEFT OUTER JOIN, the join returns all of the rows from the left-hand
table and the rows matching the join condition from the right-hand table, with
NULL values for the rows with no match in the right-hand table.

	
A RIGHT OUTER JOIN behaves in the same way as a LEFT OUTER JOIN, with the
exception that all rows are returned from the right-hand table participating in
the join.

	
For a FULL OUTER JOIN, the join returns all the rows from both the left-hand
and right-hand tables, with NULL values for the rows with no match in either
the left-hand or right-hand table.

Base tables for the OUTER JOIN examples.

-- user address table
SELECT id, city, county, state
 FROM actor.usr_address
 WHERE state = 'GA'
;

 id | city | county | state
-----+-------------+--------+-------
 116 | Atlanta | Fulton | GA
 118 | Thomasville | Thomas | GA
 148 | Lincolnton | | GA
(3 rows)

-- org_unit address table
SELECT id, city, county, state
 FROM actor.org_address
 WHERE state = 'GA'
;

 id | city | county | state
----+----------+--------+-------
 1 | Anywhere | | GA
 2 | Anywhere | | GA
 3 | Anywhere | | GA
 4 | Anywhere | | GA
 5 | Anywhere | | GA
 6 | Anywhere | | GA
 7 | Anywhere | | GA
 8 | Anywhere | | GA
 9 | Anywhere | | GA
(9 rows)

Example of a LEFT OUTER JOIN.

-- No org_unit addresses match 'OH', so we get all of the user
-- rows that match 'OH' and NULL values for the org_unit rows
SELECT aua.city, aua.state, aoa.org_unit
 FROM actor.usr_address aua
 LEFT OUTER JOIN actor.org_address aoa
 ON aua.state = aoa.state
 WHERE aua.state = 'OH'
 ORDER BY aua.city
;

 city | state | org_unit
---------------+-------+----------
 Canton | OH |
 Cedarville | OH |
 Delaware | OH |
 Fort jennings | OH |
 Gomer | OH |
 Hallsville | OH |
 Mc clure | OH |
 Southington | OH |
 Streetsboro | OH |
 Waverly | OH |
(10 rows)

Example of a RIGHT OUTER JOIN.

-- Only 3 user rows match state = 'GA', but all of the org_unit
-- rows match, so we get each org_unit matched against each user
SELECT aua.city, aua.state, aoa.org_unit
 FROM actor.usr_address aua
 RIGHT OUTER JOIN actor.org_address aoa
 ON aoa.state = aua.state
 WHERE aua.state = 'GA'
 ORDER BY aoa.org_unit
;

 city | state | org_unit
-------------+-------+----------
 Atlanta | GA | 1
 Thomasville | GA | 1
 Lincolnton | GA | 1
 Atlanta | GA | 2
 Thomasville | GA | 2
 Lincolnton | GA | 2
 Atlanta | GA | 3
...
 Lincolnton | GA | 9
(27 rows)

Example of a FULL OUTER JOIN.

SELECT * FROM aaa
 FULL OUTER JOIN bbb ON aaa.id = bbb.id
;
 id | stuff | id | stuff | foo
----+-------+----+-------+----------
 1 | one | 1 | one | oneone
 2 | two | 2 | two | twotwo
 3 | three | | |
 4 | four | | |
 5 | five | 5 | five | fivefive
 | | 6 | six | sixsix
(6 rows)

Self joins

It is possible to join a table to itself. You can (in fact you must!) use
aliases to disambiguate the references to the table.

WITH clauses

WITH clauses (more formally referred to as common table expressions, or
CTEs) enable you to define one or more subqueries as a kind of temporary
table that you can then reference in your main SELECT statement. Along with
flexibility, by defining the subqueries of your SELECT statement up-front with
meaningful names, your query is often easier to read. However, because
PostgreSQL has to create the temporary tables before executing the main body of
the query, the CTE may result in performance problems for some classes of
queries. In those cases, subqueries or joins against views may be a better
option.
In the following example, we use a WITH clause to define a subquery,
referenced as funds, as a local acquisitions practice for this Evergreen
site records the fund code for each record as a three-digit value in the
912 $a subfield. As we are interested in the results of only the last
200 purchases, we use an ORDER BY clause to sort the results of the
subquery by the record number and a LIMIT clause within the subquery to
give us a maximum of 200 results. That leaves us with a very simple main
SELECT statement to summarize the results.
WITH clause example.

WITH funds AS (
 SELECT record, value
 FROM metabib.full_rec
 WHERE tag = '912'
 AND subfield = 'a'
 AND value ~ '^\d\d\d$'
 ORDER BY record DESC
 LIMIT 200
)
SELECT value, COUNT(value)
FROM funds
GROUP BY value
ORDER BY value;

 value | count
-------+-------
 132 | 4
 151 | 14
 152 | 2
 190 | 2
 202 | 3
 212 | 1
...

4.5. Set operations

Relational databases are effectively just an efficient mechanism for
manipulating sets of values; they are implementations of set theory. There are
three operators for sets (tables) in which each set must have the same number
of columns with compatible data types: the union, intersection, and difference
operators.
Base tables for the set operation examples.

SELECT * FROM aaa;

 id | stuff
----+-------
 1 | one
 2 | two
 3 | three
 4 | four
 5 | five
(5 rows)

SELECT * FROM bbb;

 id | stuff | foo
----+-------+----------
 1 | one | oneone
 2 | two | twotwo
 5 | five | fivefive
 6 | six | sixsix
(4 rows)

Union

The UNION operator returns the distinct set of rows that are members of
either or both of the left-hand and right-hand tables. The UNION operator
does not return any duplicate rows. To return duplicate rows, use the
UNION ALL operator.
In the following example, we use UNION operators to bring together all the
possible permissions for each user in the system. A user can inherit
permissions from their user profile, from the permission groups to which they
belong, and can be granted individual permissions, so we join three result
sets using two UNION operators. In addition, for the sake of convenience we
define the entire result set as a view so that we can subsequently refer
to the result set without having to repeat the entire statement.
Example of a UNION set operation.

CREATE VIEW all_users_all_perms AS
(
 SELECT au.usrname, 'Individually granted'::text AS perm_source, ppl.code,
 pupm.depth, pupm.grantable
 FROM actor.usr au
 INNER JOIN permission.usr_perm_map pupm ON pupm.usr = au.id
 INNER JOIN permission.perm_list ppl ON ppl.id = pupm.perm
)
UNION
(
 SELECT au.usrname, 'Group membership - '::text || pgt.name AS perm_source,
 ppl.code, pgpm.depth, pgpm.grantable
 FROM actor.usr au
 INNER JOIN permission.usr_grp_map pugm ON pugm.usr = au.id
 INNER JOIN permission.grp_tree pgt ON pgt.id = pugm.grp
 INNER JOIN permission.grp_perm_map pgpm ON pgpm.grp = pgt.id
 INNER JOIN permission.perm_list ppl ON ppl.id = pgpm.perm
)
UNION
(
 SELECT au.usrname, 'User profile - '::text || pgt.name AS perm_source,
 ppl.code, pgpm.depth, pgpm.grantable
 FROM actor.usr au
 INNER JOIN permission.grp_tree pgt ON pgt.id = au.profile
 INNER JOIN permission.grp_perm_map pgpm ON pgpm.grp = pgt.id
 INNER JOIN permission.perm_list ppl ON ppl.id = pgpm.perm
);

Intersection

The INTERSECT operator returns the distinct set of rows that are common to
both the left-hand and right-hand tables. To return duplicate rows, use the
INTERSECT ALL operator.
In the following example, we use the INTERSECT operator to show which
permissions two users have in common, based on the all_users_all_perms view
that we created in the previous example.
Example of an INTERSECT set operation.

(
 SELECT code, depth, grantable
 FROM all_perms_for_all_users
 WHERE usrname = 'bm1alopez'
)
INTERSECT
(
 SELECT code, depth, grantable
 FROM all_perms_for_all_users
 WHERE usrname = 'bm1epeterson'
);
 code | depth | grantable
---+-------+-----------
 ADMIN_BOOKING_RESOURCE_ATTR_MAP | 1 | t
 CREATE_PATRON_STAT_CAT | 1 | t
 SET_CIRC_CLAIMS_RETURNED | 1 | t
 DELETE_PATRON_STAT_CAT_ENTRY | 1 | t
 ADMIN_BOOKING_RESERVATION_ATTR_MAP | 1 | t
 ABORT_TRANSIT_ON_MISSING | 0 | t
 CREATE_USER_GROUP_LINK | 1 | t
 ADMIN_COPY_LOCATION_ORDER | 1 | t
 UPDATE_PICKUP_LIB_FROM_TRANSIT | 1 | t
...

Difference

The EXCEPT operator returns the rows in the left-hand table that do not
exist in the right-hand table. You are effectively subtracting the common
rows from the left-hand table.
In the following example, we use the EXCEPT operator to show which
permissions the first user has that the second user does not, based on the
all_users_all_perms view that we created in the previous example.
Example of an EXCEPT set operation.

(
 SELECT code, depth, grantable
 FROM all_perms_for_all_users
 WHERE usrname = 'bm1alopez'
)
EXCEPT
(
 SELECT code, depth, grantable
 FROM all_perms_for_all_users
 WHERE usrname = 'bm1hstone'
)
ORDER BY 1;
 code | depth | grantable
---+-------+-----------
 ABORT_TRANSIT_ON_LOST | 0 | t
 ABORT_TRANSIT_ON_MISSING | 0 | t
 ADMIN_BOOKING_RESERVATION | 1 | t
 ADMIN_BOOKING_RESERVATION_ATTR_MAP | 1 | t
...

-- Order matters: switch the left-hand and right-hand tables
-- and you get a different result
(
 SELECT code, depth, grantable
 FROM all_perms_for_all_users
 WHERE usrname = 'bm1hstone'
)
EXCEPT
(
 SELECT code, depth, grantable
 FROM all_perms_for_all_users
 WHERE usrname = 'bm1alopez'
)
ORDER BY 1;
 code | depth | grantable
-----------------------------------+-------+-----------
 ACQ_INVOICE_REOPEN | 0 | t
 ACQ_XFER_MANUAL_DFUND_AMOUNT | 0 | t
 ADMIN_ACQ_CANCEL_CAUSE | 0 | t
 ADMIN_ACQ_CLAIM | 0 | t
...

4.6. Views

A view is a persistent SELECT statement that acts like a read-only table.
To create a view, issue the CREATE VIEW statement, giving the view a name
and a SELECT statement on which the view is built.
The following example creates a view based on our borrower profile count:
Creating a view.

CREATE VIEW actor.borrower_profile_count AS
 SELECT pgt.name AS "Profile", aou.name AS "Library", COUNT(pgt.name) AS "Count"
 FROM actor.usr au
 INNER JOIN permission.grp_tree pgt
 ON au.profile = pgt.id
 INNER JOIN actor.org_unit aou
 ON aou.id = au.home_ou
 WHERE au.deleted IS FALSE
 GROUP BY pgt.name, aou.name
 ORDER BY aou.name, pgt.name
;

When you subsequently select results from the view, you can apply additional
WHERE clauses to filter the results, or ORDER BY clauses to change the
order of the returned rows. In the following examples, we issue a simple
SELECT * statement to show that the default results are returned in the
same order from the view as the equivalent SELECT statement would be returned.
Then we issue a SELECT statement with a WHERE clause to further filter the
results.
Selecting results from a view.

SELECT * FROM actor.borrower_profile_count;

 Profile | Library | Count
----------------------------+----------------------------+-------
 Faculty | University Library | 208
 Graduate | University Library | 16
 Patrons | University Library | 62
...

-- You can still filter your results with WHERE clauses
SELECT *
 FROM actor.borrower_profile_count
 WHERE "Profile" = 'Faculty';

 Profile | Library | Count
---------+----------------------------+-------
 Faculty | University Library | 208
 Faculty | College Library | 64
 Faculty | College Library 2 | 102
 Faculty | University Library 2 | 776
(4 rows)

4.7. Inheritance

PostgreSQL supports table inheritance: that is, a child table inherits its
base definition from a parent table, but can add additional columns to its
own definition. The data from any child tables is visible in queries against
the parent table.
Evergreen uses table inheritance in several areas:
	
In the Vandelay MARC batch importer / exporter, Evergreen defines base
tables for generic queues and queued records for which authority record and
bibliographic record child tables

	
Billable transactions are based on the money.billable_xact table;
child tables include action.circulation for circulation transactions
and money.grocery for general bills.

	
Payments are based on the money.payment table; its child table is
money.bnm_payment (for brick-and-mortar payments), which in turn has child
tables of money.forgive_payment, money.work_payment, money.credit_payment,
money.goods_payment, and money.bnm_desk_payment. The
money.bnm_desk_payment table in turn has child tables of money.cash_payment,
money.check_payment, and money.credit_card_payment.

	
Transits are based on the action.transit_copy table, which has a child
table of action.hold_transit_copy for transits initiated by holds.

	
Generic acquisition line items are defined by the
acq.lineitem_attr_definition table, which in turn has a number of child
tables to define MARC attributes, generated attributes, user attributes, and
provider attributes.

5. Part 4: Understanding query performance with EXPLAIN

Some queries run for a long, long time. This can be the result of a poorly
written query—a query with a join condition that joins every
row in the biblio.record_entry table with every row in the metabib.full_rec
view would consume a massive amount of memory and disk space and CPU time—or
a symptom of a schema that needs some additional indexes. PostgreSQL provides
the EXPLAIN tool to estimate how long it will take to run a given query and
show you the query plan (how it plans to retrieve the results from the
database).
To generate the query plan without actually running the statement, simply
prepend the EXPLAIN keyword to your query. In the following example, we
generate the query plan for the poorly written query that would join every
row in the biblio.record_entry table with every row in the metabib.full_rec
view:
Query plan for a terrible query.

EXPLAIN SELECT *
 FROM biblio.record_entry
 FULL OUTER JOIN metabib.full_rec ON 1=1
;

 QUERY PLAN
---//
 Merge Full Join (cost=0.00..4959156437783.60 rows=132415734100864 width=1379)
 -> Seq Scan on record_entry (cost=0.00..400634.16 rows=2013416 width=1292)
 -> Seq Scan on real_full_rec (cost=0.00..1640972.04 rows=65766704 width=87)
(3 rows)

This query plan shows that the query would return 132415734100864 rows, and it
plans to accomplish what you asked for by sequentially scanning (Seq Scan)
every row in each of the tables participating in the join.
In the following example, we have realized our mistake in joining every row of
the left-hand table with every row in the right-hand table and take the saner
approach of using an INNER JOIN where the join condition is on the record ID.
Query plan for a less terrible query.

EXPLAIN SELECT *
 FROM biblio.record_entry bre
 INNER JOIN metabib.full_rec mfr ON mfr.record = bre.id;
 QUERY PLAN
--//
 Hash Join (cost=750229.86..5829273.98 rows=65766704 width=1379)
 Hash Cond: (real_full_rec.record = bre.id)
 -> Seq Scan on real_full_rec (cost=0.00..1640972.04 rows=65766704 width=87)
 -> Hash (cost=400634.16..400634.16 rows=2013416 width=1292)
 -> Seq Scan on record_entry bre (cost=0.00..400634.16 rows=2013416 width=1292)
(5 rows)

This time, we will return 65766704 rows - still way too many rows. We forgot
to include a WHERE clause to limit the results to something meaningful. In
the following example, we will limit the results to deleted records that were
modified in the last month.
Query plan for a realistic query.

EXPLAIN SELECT *
 FROM biblio.record_entry bre
 INNER JOIN metabib.full_rec mfr ON mfr.record = bre.id
 WHERE bre.deleted IS TRUE
 AND DATE_TRUNC('MONTH', bre.edit_date) >
 DATE_TRUNC ('MONTH', NOW() - '1 MONTH'::INTERVAL)
;

 QUERY PLAN
--//
 Hash Join (cost=5058.86..2306218.81 rows=201669 width=1379)
 Hash Cond: (real_full_rec.record = bre.id)
 -> Seq Scan on real_full_rec (cost=0.00..1640972.04 rows=65766704 width=87)
 -> Hash (cost=4981.69..4981.69 rows=6174 width=1292)
 -> Index Scan using biblio_record_entry_deleted on record_entry bre
 (cost=0.00..4981.69 rows=6174 width=1292)
 Index Cond: (deleted = true)
 Filter: ((deleted IS TRUE) AND (date_trunc('MONTH'::text, edit_date)
 > date_trunc('MONTH'::text, (now() - '1 mon'::interval))))
(7 rows)

We can see that the number of rows returned is now only 201669; that’s
something we can work with. Also, the overall cost of the query is 2306218,
compared to 4959156437783 in the original query. The Index Scan tells us
that the query planner will use the index that was defined on the deleted
column to avoid having to check every row in the biblio.record_entry table.
However, we are still running a sequential scan over the
metabib.real_full_rec table (the table on which the metabib.full_rec
view is based). Given that linking from the bibliographic records to the
flattened MARC subfields is a fairly common operation, we could create a
new index and see if that speeds up our query plan.
Query plan with optimized access via a new index.

-- This index will take a long time to create on a large database
-- of bibliographic records
CREATE INDEX bib_record_idx ON metabib.real_full_rec (record);

EXPLAIN SELECT *
 FROM biblio.record_entry bre
 INNER JOIN metabib.full_rec mfr ON mfr.record = bre.id
 WHERE bre.deleted IS TRUE
 AND DATE_TRUNC('MONTH', bre.edit_date) >
 DATE_TRUNC ('MONTH', NOW() - '1 MONTH'::INTERVAL)
;

 QUERY PLAN
--//
 Nested Loop (cost=0.00..1558330.46 rows=201669 width=1379)
 -> Index Scan using biblio_record_entry_deleted on record_entry bre
 (cost=0.00..4981.69 rows=6174 width=1292)
 Index Cond: (deleted = true)
 Filter: ((deleted IS TRUE) AND (date_trunc('MONTH'::text, edit_date) >
 date_trunc('MONTH'::text, (now() - '1 mon'::interval))))
 -> Index Scan using bib_record_idx on real_full_rec
 (cost=0.00..240.89 rows=850 width=87)
 Index Cond: (real_full_rec.record = bre.id)
(6 rows)

We can see that the resulting number of rows is still the same (201669), but
the execution estimate has dropped to 1558330 because the query planner can
use the new index (bib_record_idx) rather than scanning the entire table.
Success!
Note
While indexes can significantly speed up read access to tables for common
filtering conditions, every time a row is created or updated the corresponding
indexes also need to be maintained - which can decrease the performance of
writes to the database. Be careful to keep the balance of read performance
versus write performance in mind if you plan to create custom indexes in your
Evergreen database.

6. Part 5: Inserting, updating, and deleting data

6.1. Inserting data

To insert one or more rows into a table, use the INSERT statement to identify
the target table and list the columns in the table for which you are going to
provide values for each row. If you do not list one or more columns contained
in the table, the database will automatically supply a NULL value for those
columns. The values for each row follow the VALUES clause and are grouped in
parentheses and delimited by commas. Each row, in turn, is delimited by commas.
For example, to insert two rows into the permission.usr_grp_map table:
Inserting rows into the permission.usr_grp_map table.

INSERT INTO permission.usr_grp_map (usr, grp)
 VALUES (2, 10), (2, 4)
;

Of course, as with the rest of SQL, you can replace individual column values
with one or more use subqueries:
Inserting rows using subqueries instead of integers.

INSERT INTO permission.usr_grp_map (usr, grp)
 VALUES (
 (SELECT id FROM actor.usr
 WHERE family_name = 'Scott' AND first_given_name = 'Daniel'),
 (SELECT id FROM permission.grp_tree
 WHERE name = 'Local System Administrator')
), (
 (SELECT id FROM actor.usr
 WHERE family_name = 'Scott' AND first_given_name = 'Daniel'),
 (SELECT id FROM permission.grp_tree
 WHERE name = 'Circulator')
)
;

6.2. Inserting data using a SELECT statement

Sometimes you want to insert a bulk set of data into a new table based on
a query result. Rather than a VALUES clause, you can use a SELECT
statement to insert one or more rows matching the column definitions. This
is a good time to point out that you can include explicit values, instead
of just column identifiers, in the return columns of the SELECT statement.
The explicit values are returned in every row of the result set.
In the following example, we insert 6 rows into the permission.usr_grp_map
table; each row will have a usr column value of 1, with varying values for
the grp column value based on the id column values returned from
permission.grp_tree:
Inserting rows via a SELECT statement.

INSERT INTO permission.usr_grp_map (usr, grp)
 SELECT 1, id
 FROM permission.grp_tree
 WHERE id > 2
;

INSERT 0 6

6.3. Inserting bulk data using a COPY statement

Given a large amount of data in a text file, you can use the COPY statement
to quickly insert that data into a table. COPY statements are optimized for
bulk loading and are faster than issuing the equivalent INSERT statements.
By default, COPY expects tab-delimited files with one record per line, but
you can specify different options. You can also copy data from STDIN, which
can be useful for scripting data loads.
For example, given the following file of raw data in which ` → ` represents
a <TAB> character, we can load some copy locations into Evergreen:
Example tab-separated file for copy locations.

Storage -> 4
Newspaper room -> 5

Example command for loading data from a file.

COPY asset.copy_location(name, owning_lib) FROM '/path/to/file.tsv';

As previously noted, you can load data from STDIN. In this case, you need to
identify the end of the data in the file with \. appearing on a line by
itself. This delimiter enables other commands to follow it, for example for
a script to populate many different tables in a database.
Example command for loading data from STDIN.

COPY asset.copy_location(name, owning_lib) FROM STDIN;
Storage -> 4
Newspaper room -> 5
\.

6.4. Deleting rows

Deleting data from a table is normally fairly easy. To delete rows from a table,
issue a DELETE statement identifying the table from which you want to delete
rows and a WHERE clause identifying the row or rows that should be deleted.
In the following example, we delete all of the rows from the
permission.grp_perm_map table where the permission maps to
UPDATE_ORG_UNIT_CLOSING and the group is anything other than administrators:
Deleting rows from a table.

DELETE FROM permission.grp_perm_map
 WHERE grp IN (
 SELECT id
 FROM permission.grp_tree
 WHERE name != 'Local System Administrator'
) AND perm = (
 SELECT id
 FROM permission.perm_list
 WHERE code = 'UPDATE_ORG_UNIT_CLOSING'
)
;

Note
There are two main reasons that a DELETE statement may not actually
delete rows from a table, even when the rows meet the conditional clause.

	
If the row contains a value that is the target of a relational constraint,
for example, if another table has a foreign key pointing at your target
table, you will be prevented from deleting a row with a value corresponding
to a row in the dependent table.

	
If the table has a rule that substitutes a different action for a DELETE
statement, the deletion will not take place. In Evergreen it is common for a
table to have a rule that substitutes the action of setting a deleted column
to TRUE. For example, if a book is discarded, deleting the row representing
the copy from the asset.copy table would severely affect circulation statistics,
bills, borrowing histories, and their corresponding tables in the database that
have foreign keys pointing at the asset.copy table (action.circulation and
money.billing and its children respectively). Instead, the deleted column
value is set to TRUE and Evergreen’s application logic skips over these rows
in most cases.

6.5. Updating rows

To update rows in a table, issue an UPDATE statement identifying the table
you want to update, the column or columns that you want to set with their
respective new values, and (optionally) a WHERE clause identifying the row or
rows that should be updated.
Following is the syntax for the UPDATE statement:
UPDATE [table-name]

 SET [column] TO [new-value]

 WHERE [condition]

;

7. Part 6: The active database

When you insert, update, or delete rows in a table, the data does not
necessarily stay exactly as you specified. If you invoked functions on the
data, it will have been modified according to the function specification.
Further, the tables themselves might have triggers or rules defined on them
that modify the incoming data or cause entirely different actions to happen.
7.1. Functions (revisited)

PostgreSQL supports user-defined functions—that is, scalar or aggregate
functions written in one of a number of different languages—and Evergreen
relies heavily on user-defined functions to support its business logic.
Accordingly, to understand how the Evergreen database schema transforms input
into the results you and your users experience, you need to understand a number
of different functions written in SQL, plpgsql, and plperlu.
For just a few examples:
	
search.query_parser_fts, Evergreen’s core logic for finding visible
 bibliographic records that match a search query, is written in over
 300 lines of plpgsql and takes 11 different arguments.

	
search_normalize implements a modified version of the NACO normalization
 algorithm in 60 lines of plperlu, taking raw text from bibliographic records
 and converting it into more easily searchable text by converting ligatures
 into their ASCII equivalents, stripping punctuation, and other
 normalizations.

	
action.purge_circulations, which removes transaction records that have
 closed to protect confidentiality of patrons while retaining non-identifying
 details for statistical purposes, is written in 90 lines of plpgsql.

7.2. Triggers

A trigger can be added to a table to specify a function that should be invoked
when that table is modified by means of an INSERT, UPDATE, or DELETE statement.
The trigger can fire before or after the statement, and can fire once per
modified row, or once per statement, depending on the trigger definition. A
trigger can effectively prevent the statement from happening entirely, modify
the data that was to have been inserted or updated, and insert data into other
tables. Tables can have multiple triggers defined on them, firing matching
BEFORE triggers before AFTER triggers, with triggers within those categories
firing in alphabetical order.
For example, the biblio.record_entry table has a number of triggers defined
on it:
Triggers defined on biblio.record_entry.

Triggers:
 a_marcxml_is_well_formed BEFORE INSERT OR UPDATE ON (1)
 biblio.record_entry FOR EACH ROW
 EXECUTE PROCEDURE biblio.check_marcxml_well_formed()
 a_opac_vis_mat_view_tgr AFTER INSERT OR UPDATE ON (2)
 biblio.record_entry FOR EACH ROW
 EXECUTE PROCEDURE asset.cache_copy_visibility()
 aaa_indexing_ingest_or_delete AFTER INSERT OR UPDATE ON (3)
 biblio.record_entry FOR EACH ROW
 EXECUTE PROCEDURE biblio.indexing_ingest_or_delete()
 audit_biblio_record_entry_update_trigger (4)
 AFTER DELETE OR UPDATE ON biblio.record_entry FOR EACH ROW
 EXECUTE PROCEDURE auditor.audit_biblio_record_entry_func()
 b_maintain_901 BEFORE INSERT OR UPDATE ON (5)
 biblio.record_entry FOR EACH ROW
 EXECUTE PROCEDURE maintain_901()
 bbb_simple_rec_trigger AFTER INSERT OR DELETE OR UPDATE ON (6)
 biblio.record_entry FOR EACH ROW EXECUTE PROCEDURE
 reporter.simple_rec_trigger()
 c_maintain_control_numbers BEFORE INSERT OR UPDATE ON (7)
 biblio.record_entry FOR EACH ROW
 EXECUTE PROCEDURE maintain_control_numbers()
 fingerprint_tgr BEFORE INSERT OR UPDATE ON (8)
 biblio.record_entry FOR EACH ROW
 EXECUTE PROCEDURE biblio.fingerprint_trigger('eng', 'BKS')

	(1)
	
Checks to ensure that the MARCXML is clean XML.

	(2)
	
Updates the visible copies for the record, in the case that the record
 was undeleted.

	(3)
	
Updates the search indexes for the record after all modifications to
 the MARCXML are complete.

	(4)
	
Adds an entry to the audit.biblio_record_entry_history table to track
 the change to this record.

	(5)
	
Updates the 901 field for the record before it is inserted or updated.

	(6)
	
Updates the reporter.materialized_simple_record table.

	(7)
	
Updates the 001 and 035 fields of the record.

	(8)
	
Creates a fingerprint of the record, generally consisting of a
 concatenation of the author and title, and derives a quality value for
 the record.

7.3. Rules

Rules are conceptually similar to triggers, in that they modify the results of
SELECT, INSERT, UPDATE, or DELETE statements for a given table, but their
implementation is not contained in a function. Instead, the implementation is
one or more SQL statements that are run in addition to, or instead of, the
matching SQL statement.
For example, the following rule on biblio.record_entry prevents a DELETE
statement from actually deleting the targeted row from the table, but instead
sets the value of the deleted column to TRUE and removes the corresponding
row from the metabib.metarecord_source_map table to effectively make the
record invisible to regular users. This enables Evergreen to maintain
referential integrity for any bookbags or call numbers that might reference
the now-deleted record, for example.
Rule defined on biblio.record_entry.

Rules:
 protect_bib_rec_delete AS
 ON DELETE TO biblio.record_entry DO INSTEAD (
 UPDATE biblio.record_entry SET deleted = true
 WHERE old.id = record_entry.id;
 DELETE FROM metabib.metarecord_source_map
 WHERE metarecord_source_map.source = old.id;

8. Part 6: Issuing batch updates for bib records

Evergreen sites often have to make changes in bulk to the MARC records in the
database. Given that the MARC is stored as a TEXT field, we can use standard
search and replace string functions for very simplistic changes.
For example, let’s assume that the hostname for your electronic books provider
has changed (seemingly capriciously) from http://books.example.com to
https://ebooks.example.com. You could use the replace() function to update
all of the records in your database in a single statement, as follows:
Example: updating a hostname across all records (take 1).

UPDATE biblio.record_entry
 SET marc = replace(marc,
 'http://books.example.com',
 'https://ebooks.example.com'
)
;

This would be inefficient, however, as the statement would attempt to update
every record in the biblio.record_entry table, even those which do not
contain a matching string. So, a more efficient approach would include a
WHERE clause:
Example: updating a hostname across all records (take 2).

UPDATE biblio.record_entry
 SET marc = replace(marc,
 'http://books.example.com',
 'https://ebooks.example.com'
)
 WHERE marc LIKE '%http://books.example.com%'
;

However, this may still be problematic. The replace() function does not
understand the structure of MARCXML at all, and it is possible (although
unlikely with this particular example) that the targeted string could also
occur in the title of the record, or the author field, or places other than the
856 field, $u subfield that we actually care about. Thus, we can try using a
regular expression to limit the update:
Example: updating a hostname across all records (take 3).

UPDATE biblio.record_entry
 SET marc = regexp_replace(
 marc,
 '(<datafield tag="856"[^>]*?>.*?<subfield code="u">)' ||
 'http://books.example.com',
 '\1https://ebooks.example.com',
 'g'
) WHERE marc ~
 '<datafield tag="856"[^>]*?>.*?<subfield code="u">' ||
 'http://books.example.com'
;

OEBPS/images/icons/callouts/8.png

OEBPS/images/icons/callouts/7.png

OEBPS/images/icons/callouts/6.png

OEBPS/images/icons/callouts/10.png

OEBPS/images/icons/callouts/5.png

OEBPS/images/icons/callouts/9.png

OEBPS/images/icons/callouts/4.png

OEBPS/images/icons/callouts/3.png

OEBPS/images/icons/callouts/2.png

OEBPS/images/icons/callouts/1.png

