Easing gently into OpenSRF

Dan Scott <dscott @ aurenti an. ca>

Revision History
Revision 1.0 June 2010 DS

Table of Contents

1. INtroduCing OPENSRF ...t e s e e e e s b e e s teesbeeabeesseeeareeareesnneenneeas 2
1.1. Programming 1anguage SUPPOITeecueeiiie e eitie st esteesteeste et e ste b e ssaeesseesnneesreesnneenseeas 2
2. Enough jibber-jabber: writing an OpenSRF SENVICEccciiiie i 3
2.1. Registering a service with the OpenSRF configuration fileS........ccceveieiiieie e 4
2.2. Calling an OpenSRF MELNOMccuiiiieiie e 6
2.3. Accepting and returning more interesting data tyPeSvecveeceeiie v e 9
2.4. Accepting and returning Evergreen ODJECEScooiii e 9
2.5. Returning Streaming FESUILSccuiiivieiiecie ettt re e e ennas 12
2.6. Error! Warning! Info! DEbUQG!ooiieeiie ettt e 13
2.7. Caching results: one secret of SCalabilitycccveceeiiiiiiec e 14
2.8. Initidizing the service and its children: child 1abourcccoooeiiiiiiic e, 15
2.9. Retrieving configuration SEINGScocveiieiiiee e 15
3. Getting under the covers With OPENSREooii i 16
3.1. Get on the Messaging bUS - SAFEY ...ooiuiiiiiece e 16
3.2. OpenSRF communication flIows over XIMPP ..ot 16
3.3. OpenSRF communication flIows over HTTP ..o 17
3.4. Stateless and stateful CONNECLIONSc.oiieiiiiieiieiee e e e 19
3.5. Message DoAY FOIMELcooiiiieeie e re e sre e reenneas 22
3.6. Registering OpenSRF methods in depth ..o 23
4. Evergreen-speCific OPENSRI SEIVICESccuiiiiiiie ettt st ebe e s e e neenneas 23
5. Evergreen after one year: reflections on OpenSRE ... ie e 25
5.1. Strengths Of OPENSREccuoiiiieie e st e b e reesreesnreens 25
5.2, WEBKNESSESeeiuieiieiie ittt sttt ettt s bt ettt sae et e st e sae e b e e meeshe et e enbesneenbeeneesreenseenee e 26
S 1 01110V 26
AN o0 < 10 [oS OSSR 27
7.1. opensrf_core. xm COMPIEtE EXAMPIEcocviiiiieiie e e 27
7.2. opensrf.xm COMPIELE EXAMPIEoccueiiiee e e 29
7.3, PYtNON CHIENLE ..o et s e s e be e et e e be e s naeereas 33
S 01 0 SRR 34

The Evergreen open-source library system serves library consortia composed of hundreds of branches
with millions of patrons - for example, the Georgia Public Library Service PINES system [http://
www.georgialibraries.org/statelibrarian/bythenumbers.pdf]. One of the claimed advantages of Evergreen
over dternative integrated library systems is the underlying Open Service Request Framework
(OpenSRF, pronounced "open surf") architecture. This article introduces OpenSRF, demonstrates how to
build OpenSRF services through simple code examples, and explains the technical foundations on which
OpenSRF is built.

http://www.georgialibraries.org/statelibrarian/bythenumbers.pdf
http://www.georgialibraries.org/statelibrarian/bythenumbers.pdf
http://www.georgialibraries.org/statelibrarian/bythenumbers.pdf

Easing gently into OpenSRF

1. Introducing OpenSRF

OpenSRF is a message routing network that offers scalability and failover support for individual
services and entire servers with minimal development and deployment overhead. Y ou can use
OpenSRF to build loosely-coupled applications that can be deployed on a single server or on clusters
of geographically distributed servers using the same code and minimal configuration changes.
Although copyright statements on some of the OpenSRF code date back to Mike Rylander’ s original
explorations in 2000, Evergreen was the first major application to be developed with, and to take full
advantage of, the OpenSRF architecture starting in 2004. The first official release of OpenSRF was
0.1 in February 2005 (http://evergreen-ils.org/blog/?p=21), but OpenSRF' s development continues a
steady pace of enhancement and refinement, with the release of 1.0.0 in October 2008 and the most
recent release of 1.2.2 in February 2010.

OpenSRF is adistinct break from the architectural approach used by previous library systems and
has more in common with modern Web applications. The traditional "scale-up" approach to serve
more transactions is to purchase a server with more CPUs and more RAM, possibly splitting the load
between a Web server, a database server, and a business logic server. Evergreen, however, is built on
the Open Service Request Framework (OpenSRF) architecture, which firmly embraces the "scale-
out" approach of spreading transaction load over cheap commodity servers. Theinitial GPLS PINES
hardware cluster [http://evergreen-ils.org/blog/?p=56], while certainly impressive, may have offered
the misleading impression that Evergreen requires alot of hardware to run. However, Evergreen and
OpenSRF easily scale down to asingle server; many Evergreen libraries run their entire library system
on asingle server, and most OpenSRF and Evergreen development occurs on a virtual machine
running on a single laptop or desktop image.

Another common concern is that the flexibility of OpenSRF s distributed architecture makes it
complex to configure and to write new applications. This article demonstrates that OpenSRF itself

is an extremely simple architecture on which one can easily build applications of many kinds — not
just library applications — and that you can use a number of different languages to call and implement
OpenSRF methods with aminimal learning curve. With an application built on OpenSRF, when you
identify a bottleneck in your application’s business logic layer, you can adjust the number of the
processes serving that particular bottleneck on each of your servers; or if the problem is that your
service isresource-hungry, you could add an inexpensive server to your cluster and dedicate it to
running that resource-hungry service.

1.1. Programming language support

If you need to develop an entirely new OpenSRF service, you can choose from a number of different
languages in which to implement that service. OpenSRF client language bindings have been written
for C, Java, JavaScript, Perl, and Python, and service language bindings have been written for C, Perl,
and Python. This article uses Perl examples as alowest common denominator programming language.
Writing an OpenSRF binding for another language is arelatively small task if that language offers
libraries that support the core technol ogies on which OpenSRF depends:

» Extensible Messaging and Presence Protocol [http://tools.ietf.org/html/rfc3920] (XM PP, sometimes
referred to as Jabber) - provides the base messaging infrastructure between OpenSRF clients and
services

» JavaScript Object Notation [http://json.org] (JSON) - serializes the content of each XM PP message
in a standardized and concise format

http://evergreen-ils.org/blog/?p=21
http://evergreen-ils.org/blog/?p=56
http://evergreen-ils.org/blog/?p=56
http://evergreen-ils.org/blog/?p=56
http://tools.ietf.org/html/rfc3920
http://tools.ietf.org/html/rfc3920
http://json.org
http://json.org

Easing gently into OpenSRF

» memcached [http://memcached.org] - provides the caching service
» sydlog [http://tools.ietf.org/html/rfc5424] - the standard UNIX logging service

Unfortunately, the OpenSRF reference documentation [http://evergreen-ils.org/dokuwiki/doku.php?
id=osrf-devel:primer], although augmented by the OpenSRF glossary [http://evergreen-ils.org/
dokuwiki/doku.php?id=osrf-devel :.terms], blog posts like the description of OpenSRF and Jabber
[http://evergreen-ils.org/blog/?p=36], and even this article, is not a sufficient substitute for a complete
specification on which one could implement alanguage binding. The recommended option for would-
be devel opers of another language binding is to use the Python implementation as the cleanest basis
for a port to another language.

2. Enough jibber-jabber: writing an
OpenSRF service

Imagine an application architecture in which 10 lines of Perl or Python, using the data types native to
each language, are enough to implement a method that can then be deployed and invoked seamlessly
across hundreds of servers. Y ou have just imagined developing with OpenSRF — it istruly that simple.
Under the covers, of course, the OpenSRF language bindings do an incredible amount of work on
behalf of the developer. An OpenSRF application consists of one or more OpenSRF services that
expose methods: for example, the opensr f . si npl e- t ext demonstration service [http://svn.open-
ils.org/trac/OpenSRF/browser/trunk/src/perl/lib/OpenSRF/A pplication/Demo/SimpleT ext.pm]
exposesthe opensrf. sinpl e-text.split() andopensrf.sinple-text.reverse() methods. Each
method accepts zero or more arguments and returns zero or one results. The data types supported by
OpenSRF arguments and results are typical core language data types: strings, numbers, booleans,
arrays, and hashes.

To implement a new OpenSRF service, perform the following steps:

1. Include the base OpenSRF support libraries

2. Write the code for each of your OpenSRF methods as separate procedures
3. Register each method

4. Add the service definition to the OpenSRF configuration files

For example, the following code implements an OpenSRF service. The service includes one method
named opensr f. si npl e-text. reverse() that accepts one string as input and returns the reversed
version of that string:

#!1 [/ usr/ bi n/ per|
package OpenSRF:: Appli cation:: Denp: : Si npl eText ;
use strict;

use OpenSRF: : Applicati on;
use parent gw QpenSRF:: Appli cation/;

http://memcached.org
http://memcached.org
http://tools.ietf.org/html/rfc5424
http://tools.ietf.org/html/rfc5424
http://evergreen-ils.org/dokuwiki/doku.php?id=osrf-devel:primer
http://evergreen-ils.org/dokuwiki/doku.php?id=osrf-devel:primer
http://evergreen-ils.org/dokuwiki/doku.php?id=osrf-devel:primer
http://evergreen-ils.org/dokuwiki/doku.php?id=osrf-devel:terms
http://evergreen-ils.org/dokuwiki/doku.php?id=osrf-devel:terms
http://evergreen-ils.org/dokuwiki/doku.php?id=osrf-devel:terms
http://evergreen-ils.org/blog/?p=36
http://evergreen-ils.org/blog/?p=36
http://svn.open-ils.org/trac/OpenSRF/browser/trunk/src/perl/lib/OpenSRF/Application/Demo/SimpleText.pm
http://svn.open-ils.org/trac/OpenSRF/browser/trunk/src/perl/lib/OpenSRF/Application/Demo/SimpleText.pm
http://svn.open-ils.org/trac/OpenSRF/browser/trunk/src/perl/lib/OpenSRF/Application/Demo/SimpleText.pm

Easing gently into OpenSRF

sub text _reverse {
nmy ($self , $conn, $text) = @;
ny $reversed_text = scalar reverse($text);
return $reversed_text;

}

__ PACKAGE__->regi ster_method(
met hod => 'text_reverse'
api _name => 'opensrf.sinple-text.reverse

)

Ten lines of code, and we have a complete OpenSRF service that exposes a single method and

could be deployed quickly on acluster of serversto meet your application’s ravenous demand for

reversed strings! If you're unfamiliar with Perl, theuse QpenSRF: : Application; use parent

gw OpenSRF: : Appl i cati on/; linestell this package to inherit methods and properties from the
QpenSRF: : Appl i cati on module. For example, the call to _ PACKAGE__ - >regi st er _met hod() IS
defined in OpenSRF: : Appl i cat i on but due to inheritance is available in this package (named by the
special Perl symbol _ PACKAGE__ that contains the current package name). Ther egi st er _net hod()

procedure is how we introduce a method to the rest of the OpenSRF world.

2.1. Registering a service with the OpenSRF

configuration files

Two files control most of the configuration for OpenSRF:

» opensrf.xnl containsthe configuration for the service itself, aswell asalist of which application

serversin your OpenSRF cluster should start the service.

» opensrf_core.xm (often referred to as the "bootstrap configuration” file) contains the OpenSRF
networking information, including the XM PP server connection credentials for the public and

private routers. You only need to touch this for anew serviceif the new service needs to be

accessible viathe public router.

Begin by defining the serviceitself in opensrf. xm . To register the opensrf. si npl e-t ext Service,
add the following section to the <apps> element (corresponding to the XPath / opensr f / def aul t /

apps/):

<appS>
<opensr f. si npl e-t ext >
<keepal i ve>3</ keepal i ve>
<st at el ess>1</ st at el ess>
<l anguage>per| </ | anguage>

<i npl enent at i on>CpenSRF: : Appl i cati on: : Deno: : Si npl eText </ i npl ement ati on>

<max_r equest s>100</ max_r equest s>
<uni x_confi g>
<max_r equest s>1000</ max_r equest s>

<uni x_| og>opensr f. si npl e-t ext _uni x. | og</ uni x_| og>
<uni x_sock>opensrf. si npl e-t ext _uni x. sock</ uni x_sock>
<uni x_pi d>opensr f. si npl e-t ext _uni x. pi d</ uni x_pi d>
<mi n_chi | dren>5</mi n_chi | dren>

<max_chi | dr en>15</ max_chi | dr en>

<mi n_spar e_chil dren>2</ni n_spare_chil dren>

<max_spar e_chi | dren>5</ max_spare_chi |l dren>

<I--
<I--
<I--
<I--
<I--
<I--

<I--

<I--

<I--
<I--
<I--
<I--
<I--
<I--

EERE EEEENE

10|
[11]
12|
13|

4

-->
-->
-->
-->
-->
-->

-->
-->
-->
-->
-->

-->

-->

-->

Easing gently into OpenSRF

</ uni x_confi g>
</ opensrf.sinpl e-text>

<I-- other OpenSRF services registered here... -->
</ apps>

The element name is the name that the OpenSRF control scripts use to refer to the service.

The <keepal i ve> element specifies the interval (in seconds) between checks to determine if the
serviceis still running.

The <st at el ess> element specifies whether OpenSRF clients can call methods from this
service without first having to create a connection to a specific service backend process for that
service. If thevaueis 1, then the client can ssmply issue arequest and the router will forward
the request to an available service and the result will be returned directly to the client.

B The<l anguage> element specifies the programming language in which the serviceis
implemented.

The <i npl enent at i on> element pecifies the name of the library or module in which the service
isimplemented.

B (Cimplementationsonly): The <max_r equest s> element, as adirect child of the service
element name, specifies the maximum number of requests a process serves beforeit iskilled and
replaced by a new process.

(Perl implementations only): The <max_r equest s> element, as adirect child of the
<uni x_conf i g> element, specifies the maximum number of requests a process serves beforeit is
killed and replaced by a new process.

B The<uni x_| og> element specifies the name of the log file for language-specific log messages
such as syntax warnings.

E The<uni x_sock> element specifies the name of the UNIX socket used for inter-process
communications.

The <uni x_pi d> element specifies the name of the PID file for the master process for the
service.

The <mi n_chi | dr en> element specifies the minimum number of child processes that should be
running at any given time.

The <max_chi | dr en> element specifies the maximum number of child processes that should be
running at any given time.

The <mi n_spar e_chi | dr en> element specifies the minimum number of idle child processes
that should be available to handle incoming requests. If there are fewer than this number of spare
child processes, new processes will be spawned.

The <max_spare_children>" element specifies the maximum number of idle child processes

that should be available to handle incoming requests. If there are more than this number of spare
child processes, the extra processes will be killed.

To make the service accessible viathe public router, you must also edit the opensrf _core. xm
configuration file to add the service to the list of publicly accessible services:

<router> <l-- H -->
<l-- This is the public router. On this router, we only register applications
whi ch shoul d be accessible to everyone on the opensrf network -->
<nane>r out er </ name>
<domai n>publ i c. | ocal host </ donai n> <l-- HA4-->
<servi ces>
<servi ce>opensr f. mat h</ servi ce>
<servi ce>opensr f. si npl e-t ext </ servi ce> <l-- H-->
</ servi ces>
</router>

Easing gently into OpenSRF

This section of the opensrf_core. xnl fileislocated at XPath/ confi g/ opensrf/routers/.

publ i c. | ocal host isthe canonical public router domain in the OpenSRF installation
instructions.

Each <ser vi ce> element contained in the <ser vi ces> element offerstheir services viathe
public router as well as the private router.

Once you have defined the new service, you must restart the OpenSRF Router to retrieve the new
configuration and start or restart the service itself.

Complete working examples of the opensrf_core.xml and opensrf.xml configuration files are included
with this article for your reference.

2.2. Calling an OpenSRF method

OpenSRF clients in any supported language can invoke OpenSRF servicesin any supported language.
So let’s see afew examples of how we can call our fancy new opensrf. si npl e-t ext . reverse()
method:

2.2.1. Calling OpenSRF methods from the srfsh client

srf sh isacommand-line tool installed with OpenSRF that you can use to call OpenSRF methods. To
call an OpenSRF method, issue ther equest command and pass the OpenSRF service and method
name as the first two arguments; then pass one or more JSON objects delimited by commas as the
arguments to the method being invoked.

The following example callsthe opensr f . si npl e-t ext . r ever se method of the opensr f. si npl e-
t ext OpenSRF service, passing the string " f oobar " as the only method argument:

$ srfsh
srfsh # request opensrf.sinple-text opensrf.sinple-text.reverse "foobar"

Recei ved Data: "raboof"

Request Conpl et ed Successfully
Request Tine in seconds: 0.016718

2.2.2. Getting documentation for OpenSRF methods from the
srfsh client

Thesr f sh client also gives you command-line access to retrieving metadata about OpenSRF services
and methods. For a given OpenSRF method, for example, you can retrieve information such as

the minimum number of required arguments, the data type and a description of each argument, the
package or library in which the method isimplemented, and a description of the method. To retrieve
the documentation for an opensrf method from sr f sh, issuethei nt r ospect command, followed

by the name of the OpenSRF service and (optionally) the name of the OpenSRF method. If you do

not pass a method name to thei nt r ospect command, srf sh listsal of the methods offered by the
service. If you pass a partial method name, sr f sh lists all of the methods that match that portion of the
method name.

Easing gently into OpenSRF

Note

The quality and availability of the descriptive information for each method depends on the
developer to register the method with complete and accurate information. The quality varies
across the set of OpenSRF and Evergreen APIs, although some effort is being put towards
improving the state of the internal documentation.

srfsh# introspect opensrf.sinple-text "opensrf.sinple-text.reverse”
--> opensrf.sinmple-text

Recei ved Data: {
__c":"opensrf.sinmple-text",

Pt
"api _|evel ": 1,
"stream': 0, \ # A
"obj ect _hint":"OpenSRF_Application_Deno_Si npl eText ",
"renote": 0,
"package": " OpenSRF: : Appl i cati on: : Deno: : Si npl eText ", \ # B2
"api _nane": "opensrf.sinple-text.reverse", \ # H
"server_cl ass":"opensrf.sinmple-text",
"signature":{ \ # @
"parans”: [\ # H
{
"desc":"The string to reverse",
"name":"text",
"type":"string"
}
] 1
"desc":"Returns the input string in reverse order\n", \ # 8
"return":{ \ # W
"desc":"Returns the input string in reverse order"
"type":"string"
}
} 1
"met hod": "text _reverse", \ # H
"argc":1 \ # ©
}
}
st r eamdenotes whether the method supports streaming responses or not.
package identifies which package or library implements the method.
api _nane identifies the name of the OpenSRF method.
B signature isahash that describesthe parameters for the method.
par ans iSan array of hashes describing each parameter in the method; each parameter has a
description (desc), name (nane), and type (t ype).
B desc isastring that describes the method itself.
ret ur n isahash that describes the return value for the method; it contains a description of the
return value (desc) and the type of the returned value (t ype).
B et hod identifies the name of the function or method in the source implementation.
El argc isaninteger describing the minimum number of arguments that must be passed to this

method.

2.2.3. Calling OpenSRF methods from Perl applications

To call an OpenSRF method from Perl, you must connect to the OpenSRF service, issue the request to
the method, and then retrieve the results.

Easing gently into OpenSRF

#/ usr/ bi n/ per|

use strict;

use OpenSRF: : AppSessi on
use OpenSRF:: System

penSRF: : Syst em >bootstrap_client(config file => '/openils/conf/opensrf_core.xm");

ny $session = QpenSRF: : AppSessi on- >cr eat e(" opensrf.sinmple-text");

print

"substring: Accepts a string and a nunber as input, returns a string\n";

ny $result = $sessi on->request ("opensrf.sinple-text.substring”, "foobar", 3);
ny $request = $result->gather();

print

print

"Substring: $request\n\n”;

"split: Accepts two strings as input, returns an array of strings\n";

$request = $sessi on- >request ("opensrf.sinple-text.split", "This is a test", " ");
ny $output = "Split: [";
nmy $el ement ;
whil e ($el enent = $request->recv()) {
$out put .= $el enent->content . ", ";

}

Sout put =~ s/, $/]/;

print

print

$out put . "\n\n";

"statistics: Accepts an array of strings as input, returns a hash\n";

ny @many_strings = [
"First | think I'lIl have breakfast",
“Then | think that [unch woul d be nice",
"And then seventy desserts to finish off the day"

I

$result = $sessi on->request ("opensrf.sinple-text.statistics", @mny_strings);
$request = $result->gather();

print
print

"Length: " . $result->{"length'} . "\n";
"Word count: " . $result->{'word count'} . "\n";

$sessi on- >di sconnect () ;

The OpenSRF: : Syst em >boot strap_cl i ent () method reads the OpenSRF configuration
information from the indicated file and creates an XM PP client connection based on that
information.

The OpenSRF: : AppSessi on- >cr eat e() method accepts one argument - the name of the
OpenSRF service to which you want to want to make one or more requests - and returns an
object prepared to use the client connection to make those requests.

The OpenSRF: : AppSessi on- >r equest () method accepts a minimum of one argument - the
name of the OpenSRF method to which you want to make a request - followed by zero or more
arguments to pass to the OpenSRF method as input values. This example passes a string and an
integer to the opensrf. si npl e-t ext . subst ri ng method defined by the opensrf. si npl e-

t ext OpenSRF service.

The gat her () method, called on the result object returned by ther equest () method, iterates
over all of the possible results from the result object and returns asingle variable.

Thisrequest () cal passestwo stringsto the opensrf. si npl e-t ext . spli t method defined by
the opensrf. si npl e-t ext OpenSRF service and returns (viagat her ()) areferenceto an array
of results.

Theopensrf.sinple-text.split() method isastreaming method that returns an array

of results with one element per recv() call on the result object. We could use the gat her ()

#

#
#

#

)

BEE

ER

Easing gently into OpenSRF

method to retrieve all of the resultsin asingle array reference, but instead we ssmply iterate over
the result variable until there are no more results to retrieve.

While the gat her () convenience method returns only the content of the complete set of
results for agiven request, ther ecv() method returns an OpenSRF result object with st at us,
st at usCode, and cont ent fields aswe saw in the HTTP results example.

B Thisrequest () cal passesan array to theopensrf. si npl e-text . stati sti cs method defined
by the opensr f. si npl e-t ext OpenSRF service.

El Theresult object returns a hash reference viagat her () . The hash containsthe | engt h and
wor d_count keyswe defined in the method.

The OpenSRF: : AppSessi on- >di sconnect () method closes the XM PP client connection and
cleans up resources associated with the session.

2.3. Accepting and returning more interesting data
types

Of course, the example of accepting a single string and returning a single string is not very interesting.
Inreal life, our applications tend to pass around multiple arguments, including arrays and hashes.
Fortunately, OpenSRF makes that easy to deal with; in Perl, for example, returning areference to the
datatype does the right thing. In the following example of a method that returns alist, we accept two
arguments of type string: the string to be split, and the delimiter that should be used to split the string.

sub text _split {
ny $self = shift;
ny $conn = shift;
ny $text = shift;
my $delimter = shift || °

ny @plit_text = split $delimter, $text;
return \ @plit_text;
}

__PACKAGE - >register_method(

nmet hod => "text_split',

api _name => 'opensrf.sinple-text.split'
HE
We simply return areference to the list, and OpenSRF does the rest of the work for us to convert the
data into the language-independent format that is then returned to the caller. Asacaller of agiven
method, you must rely on the documentation used to register to determine the data structures - if the
developer has added the appropriate documentation.

2.4. Accepting and returning Evergreen objects

OpenSRF is agnostic about objects; itsrole is to pass JSON back and forth between OpenSRF clients
and services, and it allows the specific clients and services to define their own semantics for the JSON
structures. On top of that infrastructure, Evergreen offers the fieldmapper: an object-relational mapper
that provides a complete definition of all objects, their properties, their relationships to other objects,
the permissions required to create, read, update, or delete objects of that type, and the database table
or view on which they are based.

The Evergreen fieldmapper offers a great deal of convenience for working with complex system
objects beyond the basic mapping of classes to database schemas. Although the result is passed over

Easing gently into OpenSRF

the wire as a JSON object containing the indicated fields, fieldmapper-aware clients then turn those
JSON objects into native objects with setter / getter methods for each field.

All of this metadata about Evergreen objectsis defined in the fieldmapper configuration file (/
openi | s/ conf/fm I DL. xn), and access to these classesis provided by the open-i | s. cstore,
open-ils. pcrud, andopen-ils. reporter-store OpenSRF services which parse the fieldmapper
configuration file and dynamically register OpenSRF methods for creating, reading, updating, and
deleting all of the defined classes.

<cl ass id="mous" controller="open-ils.cstore open-ils.pcrud"
oi | s_obj:fiel dmapper="noney: : open_user_sunmary"
oi | s_persi st:tabl enane="noney. open_usr_sunmary"

reporter:|abel ="Qpen User Sunmary"> <l-- H
<fields oils_persist:primry="usr" oils_persist:sequence=""> <l-- A
<field nane="bal ance_owed" reporter:datatype="noney" /> <l-- H

</ cl

<field nane="t otal owed" reporter:datatype="noney" />
<field nane="total pai d" reporter:datatype="noney" />

<field name="usr" reporter:datatype="1ink"/>
</fields>
<l i nks>
<link field="usr" reltype="has_a" key="id" map="" class="au"/> <l-- @&
</links>
<permacrud xm ns="http://open-ils.org/spec/opensrf/IDL/permacrud/vi"> <I-- H
<acti ons>
<retrieve permn ssion="V|I EW USER"> <l-- Hd
<context l|ink="usr" field="home_ou"/> <l-- W

</retrieve>
</ acti ons>

</ per macr ud>
ass>

The <cl ass> element defines the class:

Thei d attribute defines the class hint that identifies the class both elsewhere in the
fieldmapper configuration file, such asin the value of thef i el d attribute of the <I i nk>
element, and in the JSON object itself when it isinstantiated. For example, an "Open User
Summary" JSON object would have the top level property of " __c¢": "nous".

Thecontrol | er attribute identifies the services that have direct access to thisclass. If open-
i I's. pcrudisnot listed, for example, then there is no means to directly access members of
this class through a public service.

Theoi | s_obj: fiel dmapper attribute defines the name of the Perl fieldmapper class that will
be dynamically generated to provide setter and getter methods for instances of the class.

Theoi | s_persi st : t abl enane attribute identifies the schema name and table name of the
database table that stores the data that represents the instances of this class. In this case, the
schemaisnoney and thetableisopen_usr_sumary.

Thereporter:|abel attribute defines a human-readable name for the class used in the
reporting interface to identify the class. These names are defined in English in the fieldmapper
configuration file; however, they are extracted so that they can be translated and served in the
user’ s language of choice.

The<fi el ds> element listsall of the fields that belong to the object.

10

Easing gently into OpenSRF

Theoi | s_persi st: pri mary attribute identifies the field that acts as the primary key for the
object; in this case, the field with the name usr .

Theoi | s_per si st : sequence attribute identifies the sequence object (if any) in this database
provides values for new instances of this class. In this case, the primary key is defined by a
field that islinked to a different table, so no sequence is used to populate these instances.

Each <f i el d> element defines asingle field with the following attributes:

The nane attribute identifies the column name of the field in the underlying database table
aswell as providing aname for the setter / getter method that can be invoked in the JSON or
native version of the object.

Thereporter: dat at ype attribute defines how the reporter should treat the contents of the
field for the purposes of querying and display.

Thereporter: | abel attribute can be used to provide a human-readable name for each field;
without it, the reporter falls back to the value of the nane attribute.

The <l i nks> element contains a set of zero or more <I i nk> elements, each of which definesa
relationship between the class being described and another class.

Thefti el d attribute identifies the field named in this class that links to the external class.

Ther el t ype attribute identifies the kind of relationship between the classes; in the case of
has_a, each valueintheusr field is guaranteed to have a corresponding value in the external
class.

Thekey attribute identifies the name of the field in the external classto which thisfield links.
The rarely-used map attribute identifies a second class to which the externa class links;

it enables thisfield to define a direct relationship to an external class with one degree of
separation, to avoid having to retrieve al of the linked members of an intermediate class just
to retrieve the instances from the actual desired target class.

Thecl ass attribute identifies the external class to which thisfield links.

The <per macr ud> element defines the permissions that must have been granted to a user to
operate on instances of this class.

The<retrieve> element isone of four possible children of the <act i ons> element that define
the permissions required for each action: create, retrieve, update, and delete.

The per ni ssi on attribute identifies the name of the permission that must have been granted
to the user to perform the action.

Thecont ext fi el d attribute, if it exists, definesthe field in this class that identifies the library
within the system for which the user must have prvileges to work. If a user has been granted a
given permission, but has not been granted privileges to work at a given library, they can not
perform the action at that library.

Therarely-used <cont ext > element identifies alinked field (1 i nk attribute) in this class which
links to an external classthat holdsthefield (fi el d attribute) that identifies the library within
the system for which the user must have privileges to work.

11

Easing gently into OpenSRF

When you retrieve an instance of a class, you can ask for the result to flesh some or al of the linked
fields of that class, so that the linked instances are returned embedded directly in your requested
instance. In that same request you can ask for the fleshed instances to in turn have their linked fields
fleshed. By bundling all of thisinto a single request and result sequence, you can avoid the network
overhead of requiring the client to request the base object, then request each linked object in turn.

Y ou can also iterate over a collection of instances and set the automatically generated i sdel et ed,
i supdat ed, Or i snew properties to indicate that the given instance has been deleted, updated,

or created respectively. Evergreen can then act in batch mode over the collection to perform the
requested actions on any of the instances that have been flagged for action.

2.5. Returning streaming results

In the previous implementation of the opensr . si npl e-t ext . spl i t method, we returned a reference
to the complete array of results. For small values being delivered over the network, thisis perfectly
acceptable, but for large sets of values this can pose a number of problems for the requesting client.
Consider a service that returns a set of bibliographic records in response to a query like "all records
edited in the past month"; if the underlying database is relatively active, that could result in thousands
of records being returned as a single network request. The client would be forced to block until al of
the results are returned, likely resulting in a significant delay, and depending on the implementation,
correspondingly large amounts of memory might be consumed as all of the results are read from the
network in asingle block.

OpenSRF offers a solution to this problem. If the method returns results that can be divided into
separate meaningful units, you can register the OpenSRF method as a streaming method and enable
the client to loop over the results one unit at atime until the method returns no further results. In
addition to registering the method with the provided name, OpenSRF also registers an additional
method with . at oni ¢ appended to the method name. The . at oni ¢ variant gathers all of the results
into asingle block to return to the client, giving the caller the ability to choose either streaming or
atomic results from a single method definition.

In the following example, the text splitting method has been reimplemented to support streaming; very
few changes are required:

sub text_split {

ny $self = shift;
ny $conn = shift;
ny $text = shift;

ny $delimter = shift || °

ny @plit_text = split $delimter, $text;

foreach my $string (@plit_text) { # B
$conn- >respond($stri ng) ;

}

return undef;

}

_ PACKAGE - >register_method(
nmet hod => "text_split',
api _name => 'opensrf.sinmple-text.split',
stream = 1 #HA

12

Easing gently into OpenSRF

Rather than returning a reference to the array, a streaming method loops over the contents of the
array and invokes ther espond() method of the connection object on each element of the array.

Registering the method as a streaming method instructs OpenSRF to also register an atomic
variant (opensrf. si npl e-text.split.atonic).

2.6. Error! Warning! Info! Debug!

Ashard as it may beto believe, it istrue: applications sometimes do not behave in the expected
manner, particularly when they are still under development. The service language bindings for
OpenSRF include integrated support for logging messages at the levels of ERROR, WARNING,
INFO, DEBUG, and the extremely verbose INTERNAL to either alocal file or to asyslogger
service. The destination of the log files, and the level of verbosity to be logged, is set in the
opensrf_core. xnm configuration file. To add logging to our Perl example, we just have to add the
OpenSRF: : Uil s:: Logger packageto our list of used Perl modules, then invoke the logger at the
desired logging level.

Y ou can include many calls to the OpenSRF logger; only those that are higher than your configured
logging level will actualy hit the log. The following example exercises al of the available logging
levelsin OpenSRF:

use OpenSRF:: Uil s:: Logger
ny $l ogger = OpenSRF:: Uil s:: Logger
sone code in sone function

{

$l ogger - >error ("Hmm sonet hi ng bad DEFI NI TELY happened!");

$l ogger - >war n("Hmm sonet hi ng bad m ght have happened.");

$l ogger - >i nf o(" Sonet hi ng happened. ") ;

$l ogger - >debug(" Sonet hi ng happened; here are sonme nore details.");

$l ogger - >i nt er nal (" Sonet hi ng happened; here are all the gory details.")
}

If you call the mythical OpenSRF method containing the preceding OpenSRF logger statements on a
system running at the default logging level of INFO, you will only see the INFO, WARN, and ERR
messages, as follows:

Example 1. Results of logging calls at the default level of INFO

[2010-03-17 22:27:30] opensrf.sinple-text [ERR :5681: Si npl eText.pm 277:] Hmm sonet hi ng
[2010-03-17 22:27:30] opensrf.sinple-text [WARN: 5681: Si npl eText.pm 278:] Hmm sonet hi ng
[2010-03-17 22:27:30] opensrf.sinple-text [INFO 5681: Si npl eText. pm 279:] Sonet hi ng happe

If you then increase the the logging level to INTERNAL (5), the logs will contain much more
information, as follows:

13

Easing gently into OpenSRF

Example 2. Results of logging calls at the default level of INTERNAL

[2010-03-17 22:48: 11] opensrf.sinple-text [ERR :5934: Si npl eText.pm 277:] Hmm sonet hi ng

[2010-03-17 22:48: 11] opensrf.sinple-text [WARN: 5934: Si npl eText. pm 278:] Hmm sonet hi ng

[2010-03-17 22:48: 11] opensrf.sinple-text [INFO 5934: Si npl eText. pm 279:] Sonet hi ng happe
[2010-03-17 22:48: 11] opensrf.sinple-text [DEBG 5934: Si npl eText. pm 280:] Sonet hi ng happe
[2010-03-17 22:48: 11] opensrf.sinple-text [INTL:5934: Si npl eText.pm 281:] Sonet hi ng happe
[2010-03-17 22:48: 11] opensrf.sinple-text [ERR :5934: Si npl eText. pm 283:] Resol ver did no
[2010-03-17 22:48: 21] opensrf.sinple-text [INTL:5934: Cache. pm 125:] Stored opensrf. sinpl
[2010-03-17 22: 48: 21] opensrf.sinple-text [DEBG 5934: Application. pm579:] Coderef for [QO
[2010-03-17 22: 48: 21] opensrf.sinple-text [DEBG 5934: Application.pm586:] A top |evel Rel
[2010-03-17 22:48:21] opensrf.sinple-text [DEBG 5934: Application. pm 190:] Method duratio
[2010-03-17 22: 48: 21] opensrf.sinple-text [INTL:5934: AppSessi on. pm 780:] Cal ling queue_w
[2010-03-17 22:48: 21] opensrf.sinple-text [|NTL:5934: AppSessi on. pm 769:] Resending...0

[2010-03-17 22:48: 21] opensrf.sinple-text [INTL:5934: AppSessi on. pm 450:] In send

[2010-03-17 22:48: 21] opensrf.sinple-text [DEBG 5934: AppSessi on. pm 506:] AppSessi on send
[2010-03-17 22:48: 21] opensrf.sinple-text [DEBG 5934: AppSessi on. pm 506:] AppSessi on send

To see everything that is happening in OpenSRF, try leaving your logging level set to INTERNAL for
afew minutes - just ensure that you have alot of free disk space available if you have a moderately
busy system!

2.7. Caching results: one secret of scalability

If you have ever used an application that depends on a remote Web service outside of your

control — say, if you need to retrieve results from a microblogging service— you know the pain

of latency and dependability (or the lack thereof). To improve the response time for OpenSRF
services, you can take advantage of the support offered by the GpenSRF: : Uti | s: : Cache module for
communicating with alocal instance or cluster of mencache daemons to store and retrieve persistent
values. The following example demonstrates caching by sleeping for 10 seconds the first time it
receives a given cache key and cannot retrieve a corresponding value from the cache:

use OpenSRF:: Uil s:: Cache; # H
sub test cache {

ny $self = shift;

nmy $conn = shift;

ny $test key = shift;

ny $cache = penSRF:: Wil s:: Cache->new ' gl obal '); #H
ny $cache key = "opensrf.sinple-text.test cache. $test key"; # H
ny $result = $cache->get cache($cache key) || undef; # B
if ($result) {

$l ogger - >i nf o(" Resol ver found a cache hit");
return $result;

—

sl eep 10;

nmy $cache ti meout = 300;

$cache->put _cache($cache key, "here", $cache ti nmeout);
return "There was no cache hit.";

H o H
EEE

The OpenSRF::Utils::Cache module provides access to the built-in caching support in OpenSRF.

The constructor for the cache object accepts a single argument to define the cache type for the
object. Each cache type can use a separate nencache server to keep the caches separated. Most
Evergreen services use the gl obal cache, while the anon cache is used for Web sessions.

14

Easing gently into OpenSRF

The cache key is simply a string that uniquely identifies the value you want to store or retrieve.
Thisline creates a cache key based on the OpenSRF method name and request input val ue.

B Theget_cache() method checksto seeif the cache key already exists. If amatching key is
found, the service immediately returns the stored value.

If the cache key does not exist, the code sleeps for 10 seconds to simulate a call to a slow remote
Web service or an intensive process.

B Thescache_timeout variable representsavalue for the lifetime of the cache key in seconds.

After the code retrievesits value (or, in the case of this example, finishes sleeping), it creates the

cache entry by calling the put _cache() method. The method accepts three arguments: the cache
key, the value to be stored ("here"), and the timeout value in seconds to ensure that we do not
return stale data on subsequent calls.

2.8. Initializing the service and its children: child
labour

When an OpenSRF serviceis started, it looks for a procedure calledinitial i ze() to set up any
global variables shared by all of the children of the service. Theini ti al i ze() procedureistypically
used to retrieve configuration settings from the opensr f . xni file.

An OpenSRF service spawns one or more children to actually do the work requested by callers of
the service. For every child process an OpenSRF service spawns, the child process clones the parent
environment and then each child processrunsthechi | d_i ni t () process (if any) defined in the
OpenSRF service to initialize any child-specific settings.

When the OpenSRF service kills a child process, it invokesthechi | d_exi t () procedure (if any) to
clean up any resources associated with the child process. Similarly, when the OpenSRF serviceis
stopped, it callsthe DESTROY() procedure to clean up any remaining resources.

2.9. Retrieving configuration settings

The settings for OpenSRF services are maintained in the opensr f. xm XML configuration file. The
structure of the XML document consists of aroot element <opensr f > containing two child el ements:

* The <def aul t > element contains an <apps> element describing all OpenSRF services running on
this system — see Section 2.1, “Registering a service with the OpenSRF configuration files’ --,
aswell as any other arbitrary XML descriptions required for global configuration purposes. For
example, Evergreen uses this section for email notification and inter-library patron privacy settings.

» The<host s> element contains one element per host that participates in this OpenSRF system. Each
host element must include an <act i veapps> element that lists all of the services to start on this host
when the system starts up. Each host element can optionally override any of the default settings.

OpenSRF includes a service named opensr f . set ti ngs to provide distributed cached accessto the
configuration settings with asimple AP!I:

» opensrf.settings.default_config. get acceptszero arguments and returns the complete set of
default settings as a JSON document.

» opensrf.settings.host_config.get acceptsone argument (hostname) and returns the complete
set of settings, as customized for that hostname, as a JSON document.

15

Easing gently into OpenSRF

* opensrf.settings.xpath. get accepts one argument (an XPath [http://www.w3.org/TR/xpath/]
expression) and returns the portion of the configuration file that matches the expression as a JSSON
document.

For example, to determine whether an Evergreen system uses the opt-in support for sharing patron
information between libraries, you could either invoke the opensr f . set ti ngs. def aul t _confi g. get
method and parse the JSON document to determine the value, or invoke the

opensrf.settings. xpat h. get method with the XPath / opensr f/ def aul t/share/ user/opt _in
argument to retrieve the value directly.

In practice, OpenSRF includes convenience librariesin all of its client language

bindings to simplify access to configuration values. C offers osrfConfig.c, Perl offers

QpenSRF: : Utils::Settingsdient,Javaoffersorg. opensrf.util.Settingsdient,andPython
offersosrf. set . Theselibraries locally cache the configuration file to avoid network roundtrips for
every request and enable the devel oper to request specific values without having to manually construct
XPath expressions.

3. Getting under the covers with OpenSRF

Now that you have seen that it truly is easy to create an OpenSRF service, we can take alook at what
isgoing on under the coversto make all of thiswork for you.

3.1. Get on the messaging bus - safely

One of the core innovations of OpenSRF was to use the Extensible Messaging and Presence Protocol
(XMPP, more colloquially known as Jabber) as the messaging bus that ties OpenSRF services
together across servers. XMPP isan "XML protocol for near-real-time messaging, presence, and
request-response services' (http://www.ietf.org/rfc/rfc3920.txt) that OpenSRF relies on to handle most
of the complexity of networked communications. OpenSRF requres an XM PP server that supports
multiple domains such as g abberd [http://www.gjabberd.im/]. Multiple domain support means that
asingle server can support XM PP virtual hosts with separate sets of users and access privileges per
domain. By routing communications through separate public and private XM PP domains, OpenSRF
services gain an additional layer of security.

The OpenSRF install ation documentation [http://evergreen-ils.org/dokuwiki/doku.php?
id=opensrf:1.2:install] instructs you to create two separate hostnames (pri vat e. | ocal host and

publ i c. | ocal host) to use as XM PP domains. OpenSRF can control access to its services based on
the domain of the client and whether a given service allows access from clients on the public domain.
When you start OpenSRF, the first XM PP clients that connect to the XM PP server are the OpenSRF
public and private routers. OpenSRF routers maintain alist of available services and connect clients
to available services. When an OpenSRF service starts, it establishes a connection to the XM PP
server and registersitself with the private router. The OpenSRF configuration contains alist of public
OpenSRF services, each of which must aso register with the public router.

3.2. OpenSRF communication flows over XMPP

In aminimal OpenSRF deployment, two XM PP users named "router” connect to the XM PP server,
with one connected to the private XM PP domain and one connected to the public XM PP domain.
Similarly, two XM PP users named "opensrf" connect to the XMPP server viathe private and public
XMPP domains. When an OpenSRF service is started, it uses the "opensrf" XMPP user to advertise

16

http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.ietf.org/rfc/rfc3920.txt
http://www.ejabberd.im/
http://www.ejabberd.im/
http://evergreen-ils.org/dokuwiki/doku.php?id=opensrf:1.2:install
http://evergreen-ils.org/dokuwiki/doku.php?id=opensrf:1.2:install
http://evergreen-ils.org/dokuwiki/doku.php?id=opensrf:1.2:install

Easing gently into OpenSRF

its availability with the corresponding router on that XM PP domain; the XM PP server automatically
assigns a Jabber 1D (JID) based on the client hostname to each service' slistener process and each
connected drone process waiting to carry out requests. When an OpenSRF router receives arequest to
invoke amethod on a given service, it connects the requester to the next available listener in the list of
registered listeners for that service.

Services and clients connect to the XMPP server using asingle set of XMPP client credentials

(for example, opensr f @ri vat e. | ocal host), but use XMPP resource identifiersto differentiate
themselvesin the JID for each connection. For example, the JID for a copy of the opensr f . si npl e-
t ext service with process ID 6285 that has connected to the pri vat e. | ocal host domain using
the opensrf XMPP client credentials could be opensr f @ri vat e. | ocal host/ opensrf. si npl e-

t ext _drone_at _| ocal host _6285. By convention, the user name for OpenSRF clientsisopensrf,
and the user name for OpenSRF routersisr out er , so the XM PP server for OpenSRF will have four
separate usersregistered: * opensrf @ri vat e. | ocal host isan OpenSRF client that connects with
these credentials and which can access any OpenSRF service. * opensr f @ubl i c. | ocal host iSan
OpenSREF client that connects with these credentials and which can only access OpenSRF services
that have registered with the public router. * r out er @r i vat e. | ocal host isthe private OpenSRF
router with which all servicesregister. * rout er @ubl i c. | ocal host isthe public OpenSRF router
with which only services that must be publicly accessible register.

All OpenSRF services automatically register themselves with the private XM PP domain, but only
those services that register themselves with the public XMPP domain can be invoked from public
OpenSRF clients. The OpenSRF client and router user names, passwords, and domain names, along
with the list of servicesthat should be public, are contained in the opensrf _core. xm configuration
file.

3.3. OpenSRF communication flows over HTTP

In some contexts, access to afull XMPP client is not a practical option. For example, while XMPP
clients have been implemented in JavaScript, you might be concerned about browser compatibility
and processing overhead - or you might want to issue OpenSRF requests from the command line
with cur | . Fortunately, any OpenSRF service registered with the public router is accessible viathe
OpenSRF HTTP Trandator. The OpenSRF HTTP Tranglator implements the OpenSRF-over-HTTP
proposed specification [http://www.open-ils.org/dokuwiki/doku.php? d=opensrf_over_http] as an
Apache module that translates HT TP requests into OpenSRF requests and returns OpenSRF results as
HTTP resultsto theinitiating HTTP client.

curl request broken up over multiple lines for legibility

H
http://1 ocal host/osrf-http-transl ator

curl -H "X-OpenSRF-service: opensrf.sinple-text" \
--data 'osrf-msg=[\
{"__c":"osrfMessage","__p":{"threadTrace":0, "l ocal e": "en- CA", \

"type": " REQUEST", "payl oad": {"__c":"osrfMethod","__p": \

{"nmethod": "opensrf.sinple-text.reverse", "parans":["foobar"]} \

) \

\

\

The X- OpenSRF- ser vi ce header identifies the OpenSRF service of interest.
The POST request consists of a single parameter, the osr f - nsg value, which contains a JSON

array.
The first object is an OpenSRF message (" __c": "osr f Message") with a set of parameters
("__p":{})

H* H H
BNE

17

http://www.open-ils.org/dokuwiki/doku.php?id=opensrf_over_http
http://www.open-ils.org/dokuwiki/doku.php?id=opensrf_over_http
http://www.open-ils.org/dokuwiki/doku.php?id=opensrf_over_http

Easing gently into OpenSRF

The identifier for the request ("t hr eadTr ace": 0); thisvalue is echoed back in the result.

» Themessage type ("t ype": " REQUEST").

The locale for the message; if the OpenSRF method is locale-sensitive, it can check the locale
for each OpenSRF request and return different information depending on the locale.

The payload of the message (" payl oad": {}) containing the OpenSRF method request
("__c":"osrfMethod") andits parameters (" __p: "{}).

» The method name for the request (" met hod" : " opensrf. si npl e-t ext. reverse").

* A set of JISON parameters to pass to the method (" par ans": [" f oobar "]); inthiscase, a
singlestring " f oobar " .
The URL on which the OpenSRF HTTP trandator islistening, / osr f - ht t p-t ransl at or isthe
default location in the Apache example configuration files shipped with the OpenSRF source,
but thisis configurable.

HTTP response broken up over nultiple lines for legibility

[{"__c":"osrfMessage"," p":
{"threadTrace": 0, "payl oad":

}

& [~

ol Vi o)

__c":"osrfMessage"," p":
{"threadTrace": 0, " payl oad":

{"_c":"osrfResult"," __p":
{"status":"OK","content":"raboof", "stat usCode": 200}
},"type":"RESULT", "l ocal e": "en- CA"

_— e
HHHHH
EERENE

}

{" __c":"osrfConnectStatus"," p":
{"status":"Request Conplete", "statusCode": 205}
}, "type": " STATUS", "l ocal e": " en- CA"

_— e
T HH K HF
EEENE

The OpenSRF HTTP Trandlator returns an array of JSON objectsin its response. Each object

in the response is an OpenSRF message (" __c": "osrf Message") with a collection of response
parameters (" __p":).

The OpenSRF message identifier ("t hr eadTr ace" : 0) confirms that this message is in response
to the request matching the same identifier.

The message includes a payload JSON object (" payl oad":) with an OpenSRF result for the
request (" __c":"osrfResult").

The result includes a status indicator string (" st at us": " OK"), the content of the result response
- inthis case, asingle string "raboof" (" content ": "raboof ") - and an integer status code for the
request (" st at usCode" : 200).

The message a so includes the message type ("t ype": " RESULT") and the message locale

("l ocal e": "en-CA").

The second message in the set of results from the response.

Again, the message identifier confirms that this message is in response to a particular request.
The payload of the message denotes that this message is an OpenSRF connection status
message (" __c": "osrf Connect St at us"), with some information about the particular OpenSRF
connection that was used for this request.

18

Easing gently into OpenSRF

E Theresponse parameters for an OpenSRF connection status message include a verbose status
("status":"Request Conpl ete") and aninteger status code for the connection status
(T"statusCode":205).

The message a so includes the message type ("t ype": " RESULT") and the message locale
("l ocal e": "en-CA").

Tip

Before adding a new public OpenSRF service, ensure that it does not introduce privilege
escalation or unchecked access to data. For example, the Evergreen open-ils. cstore
private service is an object-relational mapper that provides read and write access to the
entire Evergreen database, so it would be catastrophic to expose that service publicly. In
comparison, the Evergreen open-i | s. pcr ud public service offers the same functionality
asopen-ils. cstore toany connected HTTP client or OpenSRF client, but the additional
authentication and authorization layer in open-i | s. pcr ud prevents unchecked accessto
Evergreen’s data.

3.4. Stateless and stateful connections

OpenSRF supports both stateless and stateful connections. When an OpenSRF client issues a REQUEST

message in a statel ess connection, the router forwards the request to the next available service and the
service returns the result directly to the client.

19

Easing gently into OpenSRF

REQUEST flow in a stateless

3. Service send:
RESULT directl

to client
OpenSRF
client
1. Client issues 2. F
REQUEST to a re
service av
OpenSRF

Router

connection.

When an OpenSRF client issues a CONNECT message to create a stateful conection, the router returns
the Jabber ID of the next available service to the client so that the client can issue one or more
REQUEST message directly to that particular service and the service will return corresponding RESULT
messages directly to the client. Until the client issues a DI SCONNECT message, that particular service
isonly available to the requesting client. Stateful connections are useful for clients that need to make
many requests from a particular service, asit avoids the intermediary step of contacting the router for

20

Easing gently into OpenSRF

each request, as well as for operations that require a controlled sequence of commands, such as a set
of database INSERT, UPDATE, and DELETE statements within a transaction.

CONNECT, REQUEST, and DISCONNECT flow in a stateful

3. Client sends REQUES’

service sends RESULT
repeat until DISCON

connection.

OpenSRF
client
1. Client issues 2. Router retur
CONNECT message JID of next
for a service available servis

OpenSRF
Router

21

Easing gently into OpenSRF

3.5. Message body format

OpenSRF was an early adopter of JavaScript Object Notation (JSON). While XMPPisan XML
protocol, the Evergreen developers recognized that the compactness of the JSON format offered
asignificant reduction in bandwidth for the volume of messages that would be generated in an
application of that size. In addition, the ability of languages such as JavaScript, Perl, and Python to
generate native objects with minimal parsing offered an attractive advantage over invoking an XML
parser for every message. Instead, the body of the XM PP message is asimple JSON structure. For
asimple request, like the following example that ssmply reverses a string, it looks like a significant
overhead: but we get the advantages of |ocale support and tracing the request from the requester
through the listener and responder (drone).

<nessage from' router @rivate. | ocal host/opensrf.sinmple-text
t o=" opensrf @rivate. | ocal host/opensrf.sinple-text |istener_at | ocal host 6275
router from= opensrf @rivate.local host/ karm c_126678. 3719 6288

router to='"' router _class=""' router_comuand='' osrf_xid=
>
<t hread>1266781414. 366573. 12667814146288</ t hr ead>
<body>
[
{" _c" osrbessage "p":
{" threadTrace "l ocal e":"en-US", "type": " REQUEST", " payl oad"
{" _c": osrfN@thod __p":
{"nethod":"opensrf.sinple—text.reverse","parans":["foobar"]}
}
}
}
]
</ body>

</ message>

<nessage fronm= opensrf @rivate.| ocal host/opensrf.sinple-text drone_at | ocal host 6285
t o=" opensrf @rivate. |l ocal host/ karm c_126678. 3719 6288

router command='' router class=""' osrf_xid=
>
<t hr ead>1266781414. 366573. 12667814146288</ t hr ead>
<body>
[
{" _c" srfNEssage " p":
{" threadTrace payload
{" _c": osrfResuIt " p":

{"status":"CK","content":"raboof","statustde":200}
} ,"type":"RESULT", "l ocal e":"en-US"}

} L
{" _c" osrfNEssage " p":
{" threadTrace "payl oad":
{" srfCDnnectStatus " p":
{ status":"Request Cbnplete","statustde":ZOS}
},"type":"STATUS', "l ocal e": "en- US"}
}
]
</ body>

</ message>

The content of the <body> element of the OpenSRF request and result should look familiar; they
match the structure of the OpenSRF over HTTP examples that we previously dissected.

22

Easing gently into OpenSRF

3.6. Registering OpenSRF methods in depth

Let'sexplorethecall to __ PACKAGE__- >regi st er _met hod() ; most of the members of the hash are
optional, and for the sake of brevity we omitted them in the previous example. Aswe have seenin the
results of the introspection call, a verbose registration method call is recommended to better enable the
internal documentation. Here is the compl ete set of members that you should passto __ PACKAGE -
>regi ster_net hod():

» Thenet hod member specifies the name of the procedure in this module that is being registered as
an OpenSRF method.

» Theapi _name member specifies the invocable name of the OpenSRF method; by convention, the
OpenSRF service name is used as the prefix.

» Theoptional api _I| evel member can be used for versioning the methods to allow the use of a
deprecated API, but in practical useisaways 1.

* Theoptiona ar gc member specifies the minimal number of arguments that the method expects.

» Theoptional st r eammember, if set to any value, specifies that the method supports returning
multiple values from a single call to subsequent requests. OpenSRF automatically creates a
corresponding method with ".atomic" appended to its name that returns the complete set of results
in asingle request. Streaming methods are useful if you are returning hundreds of records and want
to act on the results as they return.

» Theoptional si gnat ur e member is a hash that describes the method’ s purpose, arguments, and
return value.

* Thedesc member of thesi gnat ur e hash describes the method’ s purpose.

» Thepar ans member of the si gnat ur e hash isan array of hashes in which each array element
describes the corresponding method argument in order.

* Thenanme member of the argument hash specifies the name of the argument.
* Thedesc member of the argument hash describes the argument’ s purpose.

» Thetype member of the argument hash specifies the data type of the argument: for example,
string, integer, boolean, number, array, or hash.

* Ther et urn member of thesi gnat ur e hash is a hash that describes the return value of the
method.

* Thedesc member of ther et ur n hash describes the return value.

» Thetype member of ther et ur n hash specifies the data type of the return value: for example,
string, integer, boolean, number, array, or hash.

4. Evergreen-specific OpenSRF services

Evergreen is currently the primary showcase for the use of OpenSRF as an application architecture.
Evergreen 1.6.1 includes the following set of OpenSRF services:

23

Easing gently into OpenSRF

Theopen-ils. actor service supports common tasks for working with user accounts and libraries.
Theopen-i | s. aut h service supports authentication of Evergreen users.
Theopen-i | s. booki ng Service supports the management of reservations for bookable items.

Theopen-ils. cat service supports common catal oging tasks, such as creating, modifying, and
merging bibliographic and authority records.

Theopen-ils. circ service supports circulation tasks such as checking out items and cal culating
due dates.

Theopen-ils. col | ecti ons Service supports tasks that assist collections agencies in contacting
users with outstanding fines above a certain threshold.

Theopen-ils. cstor e private service supports unrestricted access to Evergreen fieldmapper
objects.

Theopen-ils.ingest private service supports tasks for importing data such as bibliographic and
authority records.

Theopen-ils. pcrud service supports permission-based access to Evergreen fieldmapper objects.

Theopen-ils. penal ty penalty service supports the calculation of penalties for users, such as
being blocked from further borrowing, for conditions such as having too many items checked out or
too many unpaid fines.

Theopen-ils. reporter service supports the creation and scheduling of reports.

Theopen-ils.reporter-store private service supports access to Evergreen fieldmapper objects
for the reporting service.

Theopen-i | s. sear ch service supports searching across bibliographic records, authority records,
serial records, Z39.50 sources, and ZIP codes.

Theopen-ils. storage private service supports a deprecated method of providing accessto
Evergreen fieldmapper objects. Implemented in Perl, this service has largely been replaced by the
much faster C-based open-i | s. cst or e Service.

Theopen-ils. supercat service supports transforms of MARC records into other formats, such as
MODS, aswell as providing Atom and RSS feeds and SRU access.

Theopen-ils.trigger private service supports event-based triggers for actions such as overdue
and holds available notification emails.

Theopen-ils. vandel ay service supports the import and export of batches of bibliographic and
authority records.

Of some interest isthat the open-ils. reporter-store andopen-ils. cstore services have

identical implementations. Surfacing them as separate services enables a deployer of Evergreen to

ensure that the reporting service does not interfere with the performance-critical open-ils. cstore
service. One can aso direct the reporting service to aread-only database replicato, again, avoid
interference with open-i | s. cst or e which must write to the master database.

24

Easing gently into OpenSRF

There are only afew significant services that are not built on OpenSRF in Evergreen 1.6.0, such
asthe SIP and Z39.50 servers. These services implement different protocols and build on existing
daemon architectures (Simple2ZO0M for Z239.50), but still rely on the other OpenSRF services to
provide access to the Evergreen data. The non-OpenSRF services are reasonably self-contained and
can be deployed on different servers to deliver the same sort of deployment flexibility as OpenSRF
services, but have the disadvantage of not being integrated into the same configuration and control
infrastructure as the OpenSRF services.

5. Evergreen after one year: reflections on
OpenSRF

Project Conifer [http://projectconifer.cal has been live on Evergreen for just over ayear now, and as
one of the primary technologists | have had to work closely with the OpenSRF infrastructure during
that time. Assuch, | am in a position to identify some of the strengths and weaknesses of OpenSRF

based on our experiences.

5.1. Strengths of OpenSRF

As aservice infrastructure, OpenSRF has been remarkably reliable. We initially deployed Evergreen
on an unreleased version of both OpenSRF and Evergreen due to our requirements for some
functionality that had not been delivered in a stable release at that point in time, and despite this risky
move we suffered very little unplanned downtime in the opening months. On July 27, 2009 we moved
to anewer (but still unreleased) version of the OpenSRF and Evergreen code, and began formally
tracking our downtime. Since then, we have achieved more than 99.9% availability - including
scheduled downtime for maintenance. This compares quite favourably to the maximum of 75%
availability that we were capable of achieving on our previous library system due to the nightly
downtime that was required for our backup process. The OpenSRF "maximum request” configuration
parameter for each service that kills off drone processes after they have served a given number of
requests provides a nice failsafe for processes that might otherwise suffer from a memory leak or
hung process. It also helps that when we need to apply an update to a Perl service that is running on
multiple servers, we can apply the updated code, then restart the service on one server at atime to
avoid any downtime.

As promised by the OpenSRF infrastructure, we have also been able to tune our cluster of serversto
provide better performance. For example, we were able to change the number of maximum concurrent
processes for our database services when we saw a performance bottleneck with database access. To
go live with a configuration change, we restart the opensr f . set t i ng service to pick up the change,
then restart the affected service on each of our servers. We were aso able to turn off some of the
less-used OpenSRF services, such asopen-i | s. col | ecti ons, on one of our serversto devote more
resources on that server to the more frequently used services and other performance-critical processes
such as Apache.

The support for logging and caching that is built into OpenSRF has been particularly helpful with the
development of a custom service for SFX holdings integration into our catalogue. Once | understood
how OpenSRF works, most of the effort required to build that SFX integration service was spent

on figuring out how to properly invoke the SFX API to display human-readable holdings. Adding a
new OpenSRF service and registering severa new methods for the service was relatively easy. The
support for directing log messages to syslog in OpenSRF has also been a boon for both devel opment

25

http://projectconifer.ca
http://projectconifer.ca

Easing gently into OpenSRF

and debugging when problems arise in a cluster of five servers; we direct all of our log messages to
asingle server where we can inspect the compl ete set of messages for the entire cluster in context,
rather than trying to piece them together across servers.

5.2. Weaknesses

The primary weakness of OpenSRF is the lack of either formal or informal documentation for
OpenSRF. There are many frequently asked questions on the Evergreen mailing lists and IRC
channel that indicate that some of the people running Evergreen or trying to run Evergreen have not
been able to find documentation to help them understand, even at a high level, how the OpenSRF
Router and services work with XM PP and the Apache Web server to provide aworking Evergreen
system. Also, over the past few years severa developers have indicated an interest in developing
Ruby and PHP bindings for OpenSRF, but the efforts so far have resulted in no working code. The
lack of aformal specification, clearly annotated examples, and portable unit tests for the major
OpenSRF communication use cases is asignificant hurdle for a devel oper seeking to fulfill abase
set of expectations for aworking binding. As aresult, Evergreen integration efforts with popular
frameworks like Drupal, Blacklight, and VuFind result in the best practical option for a developer
with limited time — database-level integration — which has the unfortunate side effect of being much
more likely to break after an upgrade.

In conjunction with the lack of documentation that makesiit hard to get started with the framework,
adisincentive for new developers to contribute to OpenSRF itself is the lack of integrated unit tests.
For adeveloper to contribute a significant, non-obvious patch to OpenSRF, they need to manually
run through various (undocumented, again) use casesto try and ensure that the patch introduced no
unanticipated side effects. The same problems hold for Evergreen itself, although the Constrictor
[http://svn.open-ils.org/IL S-Contrib/constrictor] stress-testing framework offers away of performing
some automated system testing and performance testing.

These weaknesses could be relatively easily overcome with the effort through contributions from
people with the right skill sets. This article arguably offers a small set of clear examples at both the
networking and application layer of OpenSRF. A technical writer who understands OpenSRF could
contribute aformal specification to the project. With aformal specification at their disposal, a quality
assurance expert could create an automated test harness and a basic set of unit tests that could be
incrementally extended to provide more coverage over time. If one or more continual integration
environments are set up to track the various OpenSRF branches of interest, then the OpenSRF
community would have immediate feedback on build quality. Once a unit testing framework isin
place, more developers might be willing to develop and contribute patches as they could sanity check
their own code without an intense effort before exposing it to their peers.

6. Summary

In thisarticle, | attempted to provide both a high-level and detailed overview of how OpenSRF works,
how to build and deploy new OpenSRF services, how to make requests to OpenSRF method from
OpenSRF clients or over HTTP, and why you should consider it a possible infrastructure for building
your next high-performance system that requires the capability to scale out. In addition, | surveyed the
Evergreen services built on OpenSRF and reflected on the strengths and weaknesses of the platform
based on the experiences of Project Conifer after ayear in production, with some thoughts about

areas where the right application of skills could make a significant difference to the Evergreen and
OpenSRF projects.

26

http://svn.open-ils.org/ILS-Contrib/constrictor
http://svn.open-ils.org/ILS-Contrib/constrictor

Easing gently into OpenSRF

/. Appendices

71 opensrf_core. xnl Complete example

This complete example of opensrf_core. xm from aworking test system isincluded for your
convenience.

<?xm version="1.0""?>
<confi g>

<l-- bootstrap config for QpenSRF apps -->

<opensr f >
<rout er s>
<I-- define the list of routers our services will register with -->
<r out er >
<I-- This is the public router. On this router, we only register applications

whi ch shoul d be accessible to everyone on the opensrf network -->
<nane>r out er </ name>
<domai n>publ i c. | ocal host </ donai n>
<servi ces>
<servi ce>opensr f. mat h</ servi ce>
<servi ce>opensrf. si nmpl e-t ext </ servi ce>
</ servi ces>
</router>

<r out er >
<l-- This is the private router. All applications nust register with
this router, so no explicit <services> section is required -->
<name>r out er </ nanme>
<domai n>pri vat e. | ocal host </ domai n>
</router>
</routers>

<I-- Jabber | ogin settings
Qur domai n should match that of the private router -->
<domai n>pri vat e. | ocal host </ domai n>
<user nane>opensr f </ user nane>
<passwd>pri vosr f </ passwd>
<port >5222</ port >
<l-- nane of the router used on our private donain.
this should match one of the <nanme> of the private router above -->
<r out er _nane>r out er </ r out er _nane>

<l -- | 0og file setti NQgS ====================S==S=S==S========= - >
<l-- log to a local file -->
<l ogfil e>/ openil s/var/| og/osrfsys.|log</l|ogfile>

<I-- Log to syslog. You can use this sanme |ayout for
defining the logging of all services in this file -->

<l--

<l ogfil e>sysl og</| ogfil e>

<sysl og>l ocal 2</ sysl og>

27

Easing gently into OpenSRF

<act | og>l ocal 1</ act| og>
o=

<l-- 0 None, 1 Error, 2 Warning, 3 Info, 4 debug, 5 Internal (Nasty) -->
<l ogl evel >3</1 ogl evel >

<l-- config file for the services -->
<settings_config>/ openils/conf/opensrf.xm </settings_config>

</ opensrf >

<I-- The section between <gateway>...</gateway> is a standard OpenSRF C stack config f
<gat eway>

<l--

we consider ourselves to be the "originating" client for requests,
whi ch means we define the log XID string for |og traces

o=

<client>true</client>

<l-- the routers's nane on the network -->
<r out er _nanme>r out er </ r out er _nane>

<l-- jabber login info -->

<l-- The gateway connects to the public domain -->
<domai n>publ i c. | ocal host </ donai n>

<user nane>opensr f </ user nane>
<passwd>pubosr f </ passwd>

<port >5222</ port >

<l ogfi |l e>/ openi |l s/var/| og/ gat eway. | og</| ogfi |l e>

<l ogl evel >3</1 ogl evel >

</ gat eway>

<rout er s>
<router> <!-- public router -->

<trust ed_domai ns>

<l-- allow private services to register with this router
and public clients to send requests to this router. -->

<server>private. |l ocal host</server>
<l-- also allow private clients to send to the router so it can receive
<cl i ent>private.local host</client>
<cl i ent>public. | ocal host</client>

</trusted_donai ns>

<transport >
<server>public. | ocal host </ server >
<port >5222</ port >
<uni xpat h>/ openi | s/ var/ sock/ uni x_sock</ uni xpat h>
<user nane>r out er </ user nane>
<passwor d>pubr out </ passwor d>
<r esour ce>r out er </ r esour ce>
<connect _ti meout >10</ connect _ti nmeout >
<max_r econnect _att enpt s>5</ max_r econnect _att enpt s>

</transport >

<l ogfil e>/ openil s/var/log/router.|og</logfile>

<I--

<l ogfil e>sysl og</| ogfil e>

28

Easing gently into OpenSRF

<sysl og>l ocal 2</ sysl og>

-->
<l ogl evel >3</1 ogl evel >
</router>
<router> <!-- private router -->

<trust ed_domai ns>
<server>private. |l ocal host</server>

<I-- only clients on the private domain can send requests to this router

<cl i ent>private.local host</client>
</trusted_donai ns>
<transport >
<server>private. |l ocal host</server>
<port >5222</ port >
<user nane>r out er </ user nane>
<passwor d>pri vr out </ passwor d>
<r esour ce>r out er </ r esour ce>
<connect _ti meout >10</ connect _ti nmeout >
<max_r econnect _att enpt s>5</ max_r econnect _att enpt s>
</transport >
<l ogfil e>/ openil s/var/log/router.|og</l|ogfile>
<l--
<l ogfil e>sysl og</| ogfil e>
<sysl og>l ocal 2</ sysl og>
o=
<l ogl evel >3</1 ogl evel >
</router>
</routers>

</ config>

7.2. opensri xm COMpPlete example

This complete example of opensrf. xm from aworking test system isincluded for your convenience.

<?xm version="1.0""?>

<I--
vimet:ts=2: sw=2:
-->
<opensrf version="0.0.3">
<I--
There is one <host> entry for each server on the network. Settings for the
"default' host are used for every setting that isn't overridden within a given
host's confi g.
To specify which applications a host is serving, |list those applications
within that host's config section. |[|f the defaults are acceptibl e,
that's all that needs to be added/ changed.
Any valid XM_ may be added to the <default> bl ock and server conponents will
acces to it.
-->
<def aul t >
<di rs>

29

Easing gently into OpenSRF

<I-- opensrf log files go in this directory -->
<l og>/ openi | s/ var /| og</| og>

<!-- opensrf unix domai nd socket files go here -->
<sock>/ openi | s/ var/| ock</ sock>

<I-- opensrf pids go here -->
<pi d>/ openi | s/ var/run</ pi d>

<!-- global config directory -->
<conf >/ openi | s/ conf </ conf >
</dirs>
<I-- prefork, sinmple. prefork is suggested -->

<server _type>prefork</server_type>

<l-- Default doesn't host any apps -->
<acti veapps/ >
<cache>
<gl obal >
<servers>

<!-- menctached server ip:port -->
<server>127.0.0. 1:11211</ server >

</ server s>

<I-- maximumtinme that anything may stay in the cache -->
<max_cache_ti me>86400</ max_cache_ti ne>

</ gl obal >
</ cache>

<l--

These are the defaults for every served app. Each server should
duplicate the node |ayout for any nodes that need changi ng.

Any settings that are overridden in the server specific section

will be used as the config values for that server. Any settings that are
not overridden will fall back on the defaults

Note that overriding 'stateless' wll break things

-->

<apps>
<opensr f. persi st >

<l--

How many seconds to wait between server

requests before tinmng out a stateful server session
-->

<keepal i ve>1</ keepal i ve>

<I--

if 1, then we support statel ess sessions (no connect required),
if O then we don't

o=

<st at el ess>1</ st at el ess>

<l--
Tells the servers which | anguage this inplenentation is coded in

30

Easing gently into OpenSRF

In this case non "perl" servers will not be able to | oad the nodul e
o=

<l anguage>per| </ | anguage>

<l-- Module the inplenments this application -->
<i npl enent at i on>CpenSRF: : Appl i cati on: : Persi st</i npl ement ati on>

<I-- max stateful requests before a session automatically disconnects a client -
<max_r equest s>97</ max_r equest s>

<I-- settings for the backend application drones. These are probably sane defau
<uni x_confi g>

<l-- unix socket file -->
<uni x_sock>opensrf. persi st_uni x. sock</uni x_sock>

<l-- pid file -->
<uni x_pi d>opensr f. persi st_uni x. pi d</ uni x_pi d>

<I-- max requests per process backend before a child is recycled -->
<max_r equest s>1000</ max_r equest s>

<l-- log file for this application -->
<uni x_| og>opensr f. persi st_uni x. | og</ uni x_| og>

<I-- Nunber of children to pre-fork -->
<mi n_chi | dren>5</m n_chi | dren>

<! -- maxi mun nunber of children to fork -->
<max_chi | dr en>25</ max_chi | dr en>

<!'-- mni mun nunber of spare forked children -->
<m n_spare_chil dren>2</ni n_spare_chil dren>

<I'-- max nunber of spare forked children -->
<max_spar e_chi | dren>5</ max_spare_chi |l dren>

</ uni x_confi g>

<l-- Any additional setting for a particular application go in the app_settings
<app_settings>

<l-- sqglite database file -->
<dbfi | e>/ openil s/ var/ persist. db</dbfil e>

</ app_settings>
</ opensrf. persi st >

<opensrf. mat h>

<keepal i ve>3</ keepal i ve>

<st at el ess>1</ st at el ess>

<l anguage>c</ | anguage>

<i npl ement ati on>osrf _mat h. so</i npl enent ati on>

<mex_r equest s>7</ max_r equest s>

<uni x_confi g>
<uni x_sock>opensrf. mat h_uni x. sock</ uni x_sock>
<uni x_pi d>opensr f. mat h_uni x. pi d</ uni x_pi d>
<max_r equest s>1000</ max_r equest s>
<uni x_| og>opensr f. mat h_uni x. | og</ uni x_| og>

31

Easing gently into OpenSRF

<mi n_chi | dren>5</m n_chi | dren>
<max_chi | dr en>15</ max_chi | dr en>
<m n_spare_chil dren>2</ni n_spare_chil dren>
<max_spar e_chi | dren>5</ max_spare_chi |l dren>
</ uni x_confi g>
</ opensrf. mat h>

<opensr f . dbmat h>
<keepal i ve>3</ keepal i ve>
<st at el ess>1</ st at el ess>
<l anguage>c</ | anguage>
<i npl ement ati on>osrf _dbmat h. so</i npl enent ati on>
<max_r equest s>99</ nax_r equest s>
<uni x_confi g>
<max_r equest s>1000</ max_r equest s>
<uni x_| og>opensr f. dbmat h_uni x. | og</ uni x_| og>
<uni x_sock>opensrf. dbmat h_uni x. sock</ uni x_sock>
<uni x_pi d>opensr f. dbmat h_uni x. pi d</ uni x_pi d>
<mi n_chi | dren>5</m n_chi | dren>
<max_chi | dr en>15</ max_chi | dr en>
<m n_spare_chil dren>2</ni n_spare_chil dren>
<max_spar e_chi | dren>5</ max_spare_chi |l dren>
</ uni x_confi g>
</ opensr f. dbmat h>

<opensr f. si npl e-t ext >
<keepal i ve>3</ keepal i ve>
<st at el ess>1</ st at el ess>
<l anguage>per| </ | anguage>
<i npl enent at i on>CpenSRF: : Appl i cati on: : Deno: : Si npl eText </ i npl ement at i on>
<uni x_confi g>
<max_r equest s>100</ max_r equest s>
<uni x_| og>opensr f. si nmpl e-t ext _uni x. | og</ uni x_| og>
<uni x_sock>opensrf. si npl e-t ext _uni x. sock</ uni x_sock>
<uni x_pi d>opensr f. si nmpl e-t ext _uni x. pi d</ uni x_pi d>
<m n_chi | dren>5</m n_chi | dren>
<max_chi | dr en>15</ max_chi | dr en>
<m n_spare_chil dren>2</ni n_spare_chil dren>
<max_spar e_chi | dren>5</ max_spare_chi |l dren>
</ uni x_confi g>
</ opensrf. si npl e-t ext >

<opensrf.settings>
<keepal i ve>1</ keepal i ve>
<st at el ess>1</ st at el ess>
<l anguage>per| </ | anguage>
<i npl enent at i on>CpenSRF: : Appl i cation:: Settings</inpl ement ati on>
<max_r equest s>17</ nax_r equest s>
<uni x_confi g>
<uni x_sock>opensrf.settings_uni x. sock</ uni x_sock>
<uni Xx_pi d>opensrf.settings_uni x. pi d</ uni x_pi d>
<max_r equest s>1000</ max_r equest s>
<uni x_| og>opensrf.settings_uni x. | og</uni x_| og>
<mi n_chi | dren>5</m n_chi | dren>
<max_chi | dr en>15</ max_chi | dr en>
<m n_spare_chil dren>3</ni n_spare_chil dren>
<max_spar e_chi | dren>5</ max_spare_chi |l dren>
</ uni x_confi g>
</ opensrf.settings>

32

Easing gently into OpenSRF

</ apps>
</ def aul t >

<host s>

<l ocal host >
<l-- A_=.

Should match the fully qualified domain nanme of the host.

On Linux, the output of the foll owing command is authoritative:
$ perl -MNet::Domain -e 'print Net::Dommin::hostfgdn() . "\n";'

To use 'l ocal host' instead, run osrf_ctl.sh with the -1 flag
o=
<l-- List all of the apps this server will be running -->
<acti veapps>
<appnane>opensr f . per si st </ appnane>
<appnane>opensrf. setti ngs</ appnane>
<appnane>opensr f . mat h</ appnane>
<appnane>opensr f . dbmat h</ appnane>
<appnanme>opensr f. si npl e-t ext </ appnane>
</ acti veapps>

<appS>
<I-- Exanpl e of an app-specific setting override -->
<opensr f. persi st >
<app_settings>
<dbfil e>/ openi | s/ var/ persi st-override. db</ dbfil e>
</ app_settings>
</ opensr f. persi st >
</ apps>
</ | ocal host >

</ host s>

</ opensrf >

7.3. Python client

Following is a Python client that makes the same OpenSRF calls as the Perl| client:

#!/ usr/ bin/env python

""" OpenSRF client exanple in Python"""
i mport osrf.system

i mport osrf.ses

def osrf_substring(session, text, sub):
"""substring: Accepts a string and a nunmber as input, returns a string"""
request = session.request (' opensrf.sinple-text.substring' , text, sub)

Retrieve the response fromthe method
The tineout paraneter is optiona
response = request.recv(tineout=2)

request . cl eanup()

33

Easing gently into OpenSRF

The results are accessible via content ()
return response. content ()

def osrf _split(session, text, delim:
"""split: Accepts two strings as input, returns an array of strings
request = session.request('opensrf.sinple-text.split', text, delin
response = request.recv()
request. cl eanup()
return response. content ()

def osrf_statistics(session, strings):
"""statistics: Accepts an array of strings as input, returns a hash
request = session.request (' opensrf.sinple-text.statistics', strings)
response = request.recv()
request. cl eanup()
return response. content ()

if _nane__ =="__main__":
file = '/openils/conf/opensrf_core.xm'

Pull connection settings from <confi g><opensrf> secti on of opensrf_core.xmn
osrf.system System connect (config_file=file, config_context="config.opensrf')

Set up a connection to the opensrf.settings service
session = osrf.ses. dientSession(' opensrf.sinple-text')

result = osrf_substring(session, "foobar", 3)
print(result)

print

result = osrf_split(session, "This is a test", " ")
print("Received % elenments: [" %Ilen(result)),
print(', '".join(result)), ']’

many_strings = (
"First | think I'lIl have breakfast",
“Then | think that [unch woul d be nice",
"And then seventy desserts to finish off the day"

)

result = osrf_statistics(session, nmany_strings)
print("Length: %" %result["length"])
print("Wrd count: %" % result["word count"])

Cl eanup connection resources
sessi on. cl eanup()

Note

Python’s dnspyt hon module refusesto read / et ¢/ r esol v. conf , SO to access hostnames that
are not served up via DNS, such as the extremely common case of | ocal host , you may need
to install a package like dnsmasq to act asalocal DNS server for those hostnames.

8. License

The text of thiswork islicensed under a Creative Commons Attribution 3.0 Unported License [http://
creativecommons.org/licenses/by/3.0/]. All code examples are licensed under the terms of the GNU

34

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.gnu.org/licenses/gpl.html

Easing gently into OpenSRF

Genera Public License [http://www.gnu.org/licenses/gpl.html] as published by the Free Software
Foundation, either version 2 of the License, or (at your option) any later version.

35

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

	Easing gently into OpenSRF
	Table of Contents
	1. Introducing OpenSRF
	1.1. Programming language support

	2. Enough jibber-jabber: writing an OpenSRF service
	2.1. Registering a service with the OpenSRF configuration files
	2.2. Calling an OpenSRF method
	2.2.1. Calling OpenSRF methods from the srfsh client
	2.2.2. Getting documentation for OpenSRF methods from the srfsh client
	2.2.3. Calling OpenSRF methods from Perl applications

	2.3. Accepting and returning more interesting data types
	2.4. Accepting and returning Evergreen objects
	2.5. Returning streaming results
	2.6. Error! Warning! Info! Debug!
	2.7. Caching results: one secret of scalability
	2.8. Initializing the service and its children: child labour
	2.9. Retrieving configuration settings

	3. Getting under the covers with OpenSRF
	3.1. Get on the messaging bus - safely
	3.2. OpenSRF communication flows over XMPP
	3.3. OpenSRF communication flows over HTTP
	3.4. Stateless and stateful connections
	3.5. Message body format
	3.6. Registering OpenSRF methods in depth

	4. Evergreen-specific OpenSRF services
	5. Evergreen after one year: reflections on OpenSRF
	5.1. Strengths of OpenSRF
	5.2. Weaknesses

	6. Summary
	7. Appendices
	7.1. opensrf_core.xml complete example
	7.2. opensrf.xml complete example
	7.3. Python client

	8. License

