Process Notes – R2 (07/27/2017)

Contents:
Process 0 - Name and Title Processing
Process 1 - Name Processing
Process 2 - Title Processing
Process 3 - Field 856, Electronic Location and Access
Process 4 - Authority 4XX and 5XX
Process 5 - Selecting Name/Title and Title Authority
Process 6 - Series Processing

Process 0 - Name and Title Processing (5/18/2017)

0.1) Name and name/title field components
	Name part: all subfields before $t except $e, $4, $h, $j(X11)
	Role part: $e, $4, $j(X11)
	Title part: all subfields after $t except $h,v,x,y,z,w,0-8
	Series part: $v (8XX), $x (7XX, 8XX)
	Subject components: $x (6XX), $y, $z, $v (6XX)
	Genre part: $h
	Relationship part: $e/$4 (6XX), $i (7XX)
	Other?

0.2) Figuring out Relationship
	If 1XX, then name/title is the resource being described
	If 6XX, then relationship is bf:subject
		If also $e or $4, then carry over content using bflc:relation property (see 0.3 			below)
	If 700-730, then
		If I2=2, relationship is bf:hasPart
		Else relationship is bf:relatedTo
			If also have $i, then carry over $i content using bflc:relation property
	If 8XX, then relationship is bf:hasSeries
	If 760-788, then
		Relationship determined by tag and I1 (see spec)
		If also have $i, then carry over $i content using bflc:relation property

0.3) Basic RDF Patterns for Names, Titles, and Relationships

0.3.1) RDF for names
<resource>	bf:contribution [a 	bf:Contribution ;
bf:agent [a	bf: Person, Organization, etc.
				rdfs:label			“label from Process 1.3”;
				identifiedBy [a 	Identifier …..];	see Subfield $0 spec
				bflc:nameXXMatchKey 	“string from Process 1.1”;
				bflc:nameXXMarcKey		“string from Process 1.2”] ;
bf:role	 [a	bf:Role		
[rdfs:label 	“…”];				see Process 1.4	
				bf:code	“…”]].			see Process 1.4
		If URI from ID for role, then instead:
			bf:role		URI for role

If name is from 1XX:
Use bflc:PrimaryContribution instead of bf:Contribution
Also add (needed?)
<resource>	bflc:primaryContributorNameXXMatchKey	“string from Process 1.1”

0.3.2) RDF for titles
Construct Title class from title subfield; keep Title subproperties in same order as in field.
bf:Work	bf:title	[
 	a bf:Title		
rdfs:label		“label from Process 2.3” ;
		bf:mainTitle		“content of $a (X30, 240) or $t (X00, X10, X11)” ;
		bf:partnumber	“content of $n” ;
		bf:partName		“content of $p” ;
		bflc:titleXXMatchKey	“see Process 2.1” ;
		bflc:titleXXMarcKey	“see Process 2.2” ;
		bflc:titleSortKey	“see Process 2.4”] .
		bf:identifiedBy [a 	Identifier …..]	see Subfield $0 spec

Convert content of other MARC title subfields listed in rdfs:label as specified in title spec; order not necessary to preserve.	

0.3.3) RDF for relationships

<resource>	bf:relatedTo**		URI

**bf:relatedTo may instead be bf:subject, or bf:hasPart, or bf:hasSeries, or one of the other specific relationship properties

Or if need to express also a specific relationship:

If only have relation label (from 7XX $i or 6XX $e):
<resource>	bflc:relationship 	[a 	bflc:Relationship;
		bf:relatedTo**	URI;
		bflc:relation		[rdfs:label “name of relationship”]] .

If have relation label and/or relation URI:
<resource>	bflc:relationship 	[a 	bflc:Relationship;
		bf:relatedTo**	URI;
		bflc:relation	[URI for relation;
[rdfs:label “name of relationship”]]].

URI		a		bf:Work or bf:Instance;
		rdfs:label	“label from Process 2.3”;
		identifiedBy [a 	Identifier …..];	see Subfield $0 spec					bflc:titleXXMatchKey	“See Process 1.1”;
		bflc:titleXXMarcKey	“See Process 1.2”.

Process 1 - Name Processing (5/18/2017)

Conversion of X00, X10, X11 names

Note on name keys: If the fields is a name/title field, include only the subfields before the $t subfield as part of the name. A few subfields can occur in titles and names and if they are after the $t they are part of the title.

1.1) Making a name match key
For all: Drop all indicators and subfield codes – keep order in field
	X00 - abcdjq - bflc:name00MatchKey
	X10 - abcdng - bflc:name10MatchKey
	X11 - acdengq - bflc:name11MatchKey

1.2) Making name marc key
For all: Keep all indicators and subfield codes – tack tag on to beginning – keep whole field as is even if it has a title in it also -- keep order in field : tagii$atext$btext$gtext
	X00 - bflc:name00MarcKey
	X10 - bflc:name10MarcKey
	X11 - bflc:name11MarcKey

1.3) Making name rdfs: label
For all: Substitute blank for each subfield code – keep order in field
	X00 - abcdjq - rdfs:label
	X10 - abcdng - rdfs:label
	X11 - acdengq - rdfs:label

1.4) Figuring out name role

- If no $e (X00, X10), $j (X11) or $4, role is “contributor” but use URI from ID: <https://id.loc.gov/vocabulary/relators/ctb>

- If $e or $j (X11)
bf:role		bf:Role		rdfs:label 	“content of $e (X00, X10) or $j (X11)” 	
Note: If subfield content has “and”, &, or”,” there are multiple roles in subfield. Separate and process each into a separate bf:role.

- If $4 (for each $4)
bf:role	 a	bf:Role		bf:code	“content of $4”
or 	bf:role	 a	bf:Role		URI for role from ID
Note: If $4 subfield content has more than 3 characters, discard all in $4 after the first 3 characters. Process only the first 3.

- if tag of field is 1XX, then use class bflc:PrimaryContribution for name information (see Process 0.3).

Process 2 - Title Processing (5/18/2017)

Conversion of X00, X10, X11, X30, and 240 titles

Note: for subfield strings below that start with “t” include only the subfields that occur in the heading after the $t. A few subfields may occur before and after the $t and if they occur before they are part of the name, not the title.

2.1) Making a title match key
For all: Drop all subfield codes – keep order in field
	X00 – tfgklmnoprs - bflc:title00MatchKey
	X10 - tdfgklmnoprs - bflc:title10MatchKey
	X11 - tfgklnps – bflc:title11MatchKey
	X30 – adfgklmnoprs - bflc:title30MatchKey
	240 – adfgklmnoprs - bflc: title40MatchKey

2.2) Making title marc key
For all: Keep all indicators and subfield codes – tack tag on to beginning – keep whole field as is even if it has a name in it also -- keep order in field – convert delimiter to $ sign: tagii$atext$btext$gtext
	X00 - bflc:title00MarcKey
	X10 –bflc:title10MarcKey
	X11 - bflc:title11MarcKey
	X30 –bflc:title30MarcKey
	240 - bflc:title40MarcKey

2.3) Making title rdfs:label
For all: Substitute blank for each subfield code – keep order in field
	X00 – tfgklmnoprs - rdfs:label
	X10 – tdfgklmnoprs - rdfs:label
	X11 - tfgklnps - rdfs:label
	X30 – adfgklmnoprs – rdfs:label
	240 – adfgklmnoprs – rdfs:label

2.4) Making title sort string
	Make sort string from 2.3) string by removing the characters specified in Indicator 2.
	Name new string bflc:titleSortKey

Process 3 - Field 856, Electronic Location and Access (5/18/2017)

3.1) If no $u in field, then nac field 856

3.2) If 856 Ind2 = # or 0 or 8
	If the Instance is electronic (008/23= o or s)
	Instance – hasItem -
Item – electronicLocator – <uri from $u> or bnode (if there are $zy or 3 in field)
 bnode	bflc:locator	<uri from $u>
		bnode – note – Note – “rdfs:label “content of $z”
		bnode – note – Note – “rdfs:label “content of $y”
		bnode – note – Note – “rdfs:label “content of $3”

If the Instance is NOT electronic
	Create new Instance with title from analog instance and pointer to the Work,
Instance a Electronic
	 - link to the Work
	 - hasItem -
	Item – electronicLocator – uri or bnode (if there are $zy or 3 in field)
 	 bnode	bflc:locator	<uri from $u>
			bnode – note – Note – “rdfs:label “content of $z”
			bnode – note – Note – “rdfs:label “content of $y”
			bnode – note – Note – “rdfs:label “content of $3”

3.3) If 856 Ind2 = 2
	Instance – supplementaryContent – <uri from $u> or bnode (if there are $zy or 3 in field)
	 bnode 	bflc:locator	<uri from $u>
			bnode – note – Note – “rdfs:label “content of $z”
			bnode – note – Note – “rdfs:label “content of $y”
			bnode – note – Note – “rdfs:label “content of $3”

Process 4 - Authority 4XX and 5XX (7/27/2017)

4.1) Authority 4XX

Tags 400, 410, 411 without $t (only a name)
· Process using Process 1 and Process 0 (names part) as applicable to make matching keys and then process like bib 1XX and make W – contribution.
(In other words just treat it like a bib 7XX that is a name, not a name/title.) If no role in MARC data then make role id.loc.gov/…/ctr.

Tags 400, 410, 411 with $t or 430
· Separate the part before the $t (name part) and the part after and including the $t (title part); for 430, the title part is all after the $a.
· Create a bflc:nameXXMatchKey with the name part before the $t. (Ignore for 430)
· Compare it to the bflc:nameXXMatchKey made for the 1XX. (Ignore for 430)
· If match then discard name part.
· Treat title part like a variant title: W – title – VariantTitle
· Use Bib spec for “X30, 240” to process variant title parts
· If have name part but it does not match the 1XX name part, process like a 4XX with a contribution element (id.loc.gov…/ctr)

4.2) Authority 5XX
Tags 500, 510, 511 without $t (only a name)
· Process using Process 1 and Process 0 (names part) as applicable to make matching keys and then process like bib 1XX and make W – contribution

Tags 500, 510, 511 with $t
· Separate the data before the $t (name part) and the data after and including the $t (title part)
· Process the data before the $t using Process 1.1, 1.2, 1.3, 1.5 to make matching keys and then process name parts using Bib spec “X00, X10, etc.”

· Process data after the $t using Process 2 to make matching keys and process title parts using Bib spec “X30, 240”
· To determine the relationships, see Process 0.3.3, “RDF for relationships”
· If 500, 510, 511 tag has $i, create
bflc:relationship [a bflc:Relationship ;
bf:relatedTo	<related W uri>
bflc:relation	rdfs:label “content of $i”

· If 500, 510, 511 tag does not have $i, examine $w/0
· If $w/0=f, create W –derivativeOf – W
· If 500, 510, 511 tag does not have $i and $w/0 does not=f, create W – relatedTo -- W

Tag 530
· Process data after the $a using Process 2 to make matching keys and process title parts using Bib spec “X30, 240”
· To determine the relationships, see Process 0.3.3, “RDF for relationships”
· If 530 tag has $i, create
bflc:relationship [a bflc:Relationship ;
bf:relatedTo	<related W uri>
bflc:relation	rdfs:label “content of $i”

· If 530 tag does not have $i, examine $w/0
· If $w/0=f, create W –derivativeOf – W
· If 530 tag does not have $i or $w/0=f, create W – relatedTo – W

Process 5 - Selecting Name/Title and Title Authority (7/27/2017)

5.1) Record selection
Select records to process from the Names file
	- If 130 – select
	- If 100, 110, 111 have $t – select

5.2) Missing conversion
Stash any FIELD that occurs in a record and does not get a convert as follows:
bflc: missingConversionSpec – literal (marc field with tag and indicators and subfields)
	
5.3) Notes
- There is not any way to identify a serial or integrating.
[bookmark: _GoBack]- Approximate number of title and name/title records in the LC Authority file (2017) 1,256,426, (2016) 1,178,841, and (2012) 1,055,887
- To identify Series records within the selected records: 008/16 = a
	Additional check: 008/12 not=n; 008/13 not=n

Process 6 - Series Processing (6/09/2017)

6.1) Step 1

Convert 490 and 8xx together

First break a 490 with repeating $a into multiple 490 with $a($x)($v) in each. Keep 490s in same order as $a’s in the field.

Then if more than one of 490/8xx, pair them assuming they are in same order, i.e., first 490 goes with first 8xx, etc.

6.2) Step 2

For each pair make the following:
Instance 	hasSeries	a	Instance
	rdfs:label							490-a
	seriesStatement	literal					490-concatenate av
	seriesEnumeration	literal					8xx-v or 490-v; prefer 8xx-v	identifiedBy	Issn	rdf:value				490-x or 8xx-x
	bflc:appliesTo	bflc:AppliesTo rdfs:label			490-3
	instanceOf		a 	Work
		title			title construct			8xx but ignore $v
		contribution		agent construct		8xx
		identifiedBy	Issn	rdf:value			8xx-x or 490-x

If the 490 has a $6, make a second hasSeries and apply the same process.

6.3) Treatment of ISSNs in $x

8xx $x or 490 $x -- the 490 and/or the 8xx tag may have the ISSN ($x) so get it from either. The ISSN ends up in both the Instance and the Work but that is intentional.

6.4) Treatment of volume data in $v

8xx $v or 490 $v (prefer 8xx $v) -- Either or both (but usually both) tags will have the volume number but prefer to get it from 8xx with 490 as fallback.

6.5) Ignore $l

