
Guidelines for using the PREMIS Version 3 OWL
Ontology

Acknowledgments

Introduction
Differences Between v. 2 and v. 3 Ontology
Preservation Vocabularies Integration
External vocabularies
Conventions

Typographic conventions
Diagram conventions

Identifier

Relationships Between PREMIS Entities
Object to Event
Object to Rights
Event to Object
Event to Agent
Agent to Event
Rights to Agent
Agent to Object
Agent to Rights
Rights to Object

Object
Object type (objectCategory)
Preservation Policy (preservationLevel)
Significant Properties
Compound Objects (compositionLevel)
Fixity
Size
Format
Creating Application
Inhibitors
Original Name
Storage
Signature
Environment
Relationships between Objects
Objects sequencing (relatedObjectSequence)

Event

1

Agent

Rights
Rights Basis
Rights status
Rule (rightsGranted)

Acknowledgments
The PREMIS Editorial Committee appointed a working group to revise the previous ontology
consisting of the following members:

Charles Blair (University of Chicago)
Lina Bountouri (Publications Office of the European Union)
Bertrand Caron (Bibliothèque nationale de France)
Esmé Cowles (Princeton University)
Angela DiIorio (Sapienza Università di Roma)
Rebecca Guenther (Consultant, Library of Congress)
Evelyn McLellan (Artefactual Systems)
Elizabeth Russey Roke (Emory University)

Introduction
PREMIS is based on a data model that defines the entities that are described (Objects,
Events, Agents and Rights), the properties of those entities (semantic units), and
relationships between them. This PREMIS OWL ontology provides an RDF encoding
reflecting that model. This document is based on the PREMIS Data Dictionary version 3
(http://www.loc.gov/standards/premis/v3/premis-3-0-final.pdf). Readers should refer to it for
the definitions of PREMIS terms.

These guidelines aim only to provide an endorsed expression of the PREMIS Data
Dictionary version 3.0 and its data model in RDF, in order to facilitate interoperability
between repositories or registries publishing or exchanging metadata about digital objects.
Implementers are therefore encouraged to use the RDF constructs listed below and
supplement them by creating subclasses and subproperties of their own where necessary.

Please also note that, because the RDF expression recommended in this document directly
reuses some external vocabularies, this document should be read before using the PREMIS
Ontology 3.0.

Implementation details like OWL version, OWL sublanguage, preferred prefix and
namespace URI will be determined when the final version of the ontology gets published.

2

http://www.loc.gov/standards/premis/v3/premis-3-0-final.pdf

Differences Between v. 2 and v. 3 Ontology
This is a revision of an RDF ontology based on the PREMIS Data Dictionary version 2.2
available at: http://www.loc.gov/premis/rdf/v1. It is a substantial remodeling based on
incorporating emerging Linked Data best practices, such as reusing and connecting to
classes and properties from other related ontologies. The previous version of the ontology
reflected an encoding of the PREMIS Data Dictionary in RDF, which was fairly faithful to the
semantic units of the Data Dictionary, enhanced by value vocabularies, available at
http://id.loc.gov/preservationdescriptions. This revision asserts relationships between
PREMIS classes and properties and other vocabularies, and in some cases reuses external
classes and properties. Generalized properties are used throughout the ontology, such as
for identifier, note, and version.

The basic principles followed for the PREMIS OWL ontology 3.0 were:

● Make the ontology as simple as possible.
● Reuse existing elements from well-known ontologies where possible and where

semantics agree.
● Make relationships between PREMIS elements and those from well-known

ontologies (with skos:closeMatch, skos:exactMatch). These can be hierarchical
relationships (e.g. class/subclass, property/subproperty) or equivalencies
(skos:exactMatch, skos:closeMatch).

● Use URIs to identify things rather than strings. If there is an enumerable set, then
create URIs for the items of the set. These are done in
http;//id.loc.gov/preservationdescriptions

● Follow RDF constructions, rather than XML constructions. Use data dictionary names
where appropriate.

● Types / Categories for an object are classes, using rdf:type, and creating subClasses
if necessary.

● Refinement of properties should be done by creating subproperties, if necessary,
● Extension is handled via RDF, by simply adding additional properties to the objects,
● Cardinalities are not useful to validate RDF data, like in the XML Schema

implementations, but for the user to know which data structures he/she could be
awaiting. The semantic units mandatory obligation in the Data Dictionary will not
systematically be reflected as classes and properties cardinality.

● The names of the classes and predicates should follow best practice naming
conventions. Classes should generally be initial upper case noun phrases
(ClassOfThing), predicates should be initial lowercase verb phrases
(hasSomeRelationship).

● RDF functionality that isn’t very widely supported or has the potential to conflict with
local implementation, such as named graphs and reification, should be avoided.

3

http://www.loc.gov/premis/rdf/v1
http://id.loc.gov/preservationdescriptions
http://id.loc.gov/preservationdescriptions/

Preservation Vocabularies Integration
Preservation vocabularies listed at http://id.loc.gov/vocabulary/preservation.html were
originally created as controlled vocabularies associated with specific PREMIS semantic
units. 1

Example: the values of the semantic unit messageDigestAlgorithm semantic unit should be 2

a controlled list. A controlled vocabulary proposed at
http://id.loc.gov/vocabulary/preservation/cryptographicHashFunctions.html specifies a
standard form for the most commonly expected values of this semantic unit.

The new version of the ontology assigns a key role to these vocabularies as they are
intended to provide refinements of generic PREMIS elements defined in the ontology.
Therefore members of each preservation vocabulary, which are now instances of SKOS
Concept and MADS-RDF Topic, will be in a near future provided with additional assertions,
making them either subproperties, subclasses or instances of elements declared in the
PREMIS ontology.

Example: members of the ‘cryptographic hash functions’ vocabulary mentioned above will be
declared subclasses of premis:Fixity .

Should implementers feel the need for new elements in the preservation vocabularies, they
can create their own and relate it to the corresponding ontology elements.

Example: an implementer who would need to specify that a Bitstream is located in an XML
File, at a specific place indicated by its XML ID could create a my:xmlIDref class, and
declare it subclass of premis:StorageLocation .

Note that if implementers consider their new term to be generic enough to serve the
community, they may as well suggest that the PREMIS Editorial Committee add it.

External vocabularies

Ontology Prefix used in
this document

Namespace

The following vocabularies are reused from existing ontologies

Dublin Core
Elements

dce http://purl.org/dc/elements/1.1/

1 Note that preservation vocabularies can be used in any expression of the PREMIS Data Dictionary,
be it XML, RDF or relational database, and even by non-PREMIS implementations.
2 See PREMIS Data Dictionary version 3.0, p. 61,
http://www.loc.gov/standards/premis/v3/premis-3-0-final.pdf#page=71.

4

http://id.loc.gov/vocabulary/preservation.html
http://id.loc.gov/vocabulary/preservation/cryptographicHashFunctions.html
http://purl.org/dc/elements/1.1/
http://www.loc.gov/standards/premis/v3/premis-3-0-final.pdf#page=71

Dublin Core
Terms

dct http://purl.org/dc/terms/

EBU Core ebucore https://www.ebu.ch/metadata/ontologies/ebucore#

Friend Of A
Friend

foaf http://xmlns.com/foaf/spec/

Open Digital
Rights
Language

odrl https://www.w3.org/ns/odrl/2/

OWL 2 Web
Ontology
Language

owl http://www.w3.org/2002/07/owl#

Object Reuse
and Exchange

ore http://www.openarchives.org/ore/terms

PROV
Ontology

prov http://www.w3.org/ns/prov#

RDF Schema rdfs http://www.w3.org/TR/rdf-schema/

The following vocabularies are id.loc.gov preservation vocabularies

Actions
Granted

acGranted id.loc.gov/vocabulary/preservation/actionsGranted

Agent Type agType id.loc.gov/vocabulary/preservation/agentType

Content
Location Type

contLocType id.loc.gov/vocabulary/preservation/contentLocationType

Copyright
Status

copStatus id.loc.gov/vocabulary/preservation/copyrightStatus/

Cryptographic
Hash
Functions

crypHashFunc id.loc.gov/vocabulary/preservation/cryptographicHashFunction
s

Environment
Characteristic

envChar id.loc.gov/vocabulary/preservation/environmentCharacteristic

Environment
Function Type

envFuncType id.loc.gov/vocabulary/preservation/environmentFunctionType

Environment
Registry Role

envRegRole id.loc.gov/vocabulary/preservation/environmentRegistryRole

Event
Outcome

evOutcome id.loc.gov/vocabulary/preservation/eventOutcome
(not yet established)*

Event Related
Agent Role

evRelAgRole id.loc.gov/vocabulary/preservation/eventRelatedAgentRole

5

http://purl.org/dc/terms/
https://www.ebu.ch/metadata/ontologies/ebucore#
http://xmlns.com/foaf/spec/
https://www.w3.org/ns/odrl/2/
http://www.w3.org/2002/07/owl#
http://www.openarchives.org/ore/terms/
http://www.w3.org/ns/prov#
http://www.w3.org/TR/rdf-schema/
http://id.loc.gov/vocabulary/preservation/actionsGranted
http://id.loc.gov/vocabulary/preservation/agentType
http://id.loc.gov/vocabulary/preservation/contentLocationType
http://id.loc.gov/vocabulary/preservation/copyrightStatus/
http://id.loc.gov/vocabulary/preservation/cryptographicHashFunctions
http://id.loc.gov/vocabulary/preservation/cryptographicHashFunctions
http://id.loc.gov/vocabulary/preservation/environmentCharacteristic
http://id.loc.gov/vocabulary/preservation/environmentFunctionType
http://id.loc.gov/vocabulary/preservation/environmentRegistryRole
http://id.loc.gov/vocabulary/preservation/eventOutcome
http://id.loc.gov/vocabulary/preservation/eventRelatedAgentRole

Event Related
Object Role

evRelObjRole id.loc.gov/vocabulary/preservation/eventRelatedObjectRole

Event Type evType id.loc.gov/vocabulary/preservation/eventType

Format
Registry Role

forRegRole id.loc.gov/vocabulary/preservation/formatRegistryRole

Functionality func id.loc.gov/vocabulary/preservation/functionality
(not yet established)*

Inhibitor Type inhibType id.loc.gov/vocabulary/preservation/inhibitorType

Linking
Environment
Role

linkEnvRole id.loc.gov/vocabulary/preservation/linkingEnvironmentRole

Preservation
Level Role

presLevRole id.loc.gov/vocabulary/preservation/preservationLevelRole

Preservation
Level Type

presLevType id.loc.gov/vocabulary/preservation/preservationLevelType
(not yet established)*

Relationship
Subtype

relSubType id.loc.gov/vocabulary/preservation/relationshipSubType

Relationship
Type

relType id.loc.gov/vocabulary/preservation/relationshipType

Rights Basis rightsBasis id.loc.gov/vocabulary/preservation/rightsBasis

Rights Related
Agent Role

rightsRelAgRole id.loc.gov/vocabulary/preservation/rightsRelatedAgentRole

Signature
Encoding

sigEncoding id.loc.gov/vocabulary/preservation/signatureEncoding

Signature
Method

sigMethod id.loc.gov/vocabulary/preservation/signatureMethod

Storage
Medium

storMedium id.loc.gov/vocabulary/preservation/storageMedium

The following vocabularies are used in examples

Bibframe bf http://id.loc.gov/ontologies/bibframe#

Portland
Common Data
Model

pcdm http://pcdm.org/models#

Wikidata Entity wd http://www.wikidata.org/entity/

6

http://id.loc.gov/vocabulary/preservation/eventRelatedObjectRole
http://id.loc.gov/vocabulary/preservation/eventType
http://id.loc.gov/vocabulary/preservation/formatRegistryRole
http://id.loc.gov/vocabulary/preservation/inhibitorType
http://id.loc.gov/vocabulary/preservation/linkingEnvironmentRole
http://id.loc.gov/vocabulary/preservation/preservationLevelRole
http://id.loc.gov/vocabulary/preservation/relationshipSubType
http://id.loc.gov/vocabulary/preservation/relationshipType
http://id.loc.gov/vocabulary/preservation/rightsBasis
http://id.loc.gov/vocabulary/preservation/rightsRelatedAgentRole
http://id.loc.gov/vocabulary/preservation/signatureEncoding
http://id.loc.gov/vocabulary/preservation/signatureMethod
http://id.loc.gov/vocabulary/preservation/storageMedium
http://id.loc.gov/ontologies/bibframe#
http://pcdm.org/models#
http://www.wikidata.org/entity/

The prefix "my:" is used to introduce an example of locally defined class or property.
*See document Changes for id.loc.gov preservation voc

Conventions

Typographic conventions
The name of PREMIS semantic units is indicated using italics. RDF vocabularies are
indicated using the Courier New font.

Example: "The compositionLevel semantic unit should be expressed through the
premis:hasCompositionLevel property."

Diagram conventions
In the diagrams, resources are mentioned with a fictitious URI and the class they are
instance of is indicated in bold and italics above the URI.

Instances of classes defined in the PREMIS ontology 3.0 are represented by gray ellipses,
instances of locally defined classes are black ellipses, instances of classes or individuals
defined at http://id.loc.gov/vocabulary/preservation are green ellipses, and individuals of
classes defined in other ontologies are purple ellipses.

Examples:

Identifier
In RDF, defining an Identifier element is generally unnecessary, since the identifier of each
Entity is the URI that is the subject of the triples. A URI being universally unique, its identifier
type does not need to be specifically stated in a separate assertion.

Example:

7

http://id.loc.gov/vocabulary/preservation

Fig. 1: Identifier as URI

<uriIdentifier1> a premis:Representation .

Nevertheless, if the identifier value is a literal and not a URI, the simplest approach is to
use dct:identifier (or subproperties of it to indicate the identifier type)

Example:

Fig. 2: Using dct:Identifier

<uri1> a premis:Representation ;
dct:identifier "1234" .

Note: a premis:Identifier class and a premis:hasIdentifier property are
maintained, but should be used only

- if additional information is required (such as identifier status or administrative 3

history);
- or to point to instances of classes from existing vocabularies that would use

classes to define identifier types, e.g.
http://id.loc.gov/ontologies/bibframe#c_ISBN.

Example 1: the identifier is a locally defined string, with additional assertions.

3 Note that there is no equivalent semantic unit in the PREMIS Data DIctionary. Properties to be
attached to a premis:Identifier class are therefore entirely up to implementers.

8

http://id.loc.gov/ontologies/bibframe.html#c_ISBN

Fig. 3: Using locally defined identifiers with additional properties

<uri1> a premis:Representation ;
premis:hasIdentifier <identifier1> .

<identifier1> a my:localID ;
dct:created "2016-12-04" ;
rdf:value "0456" .

Example 2: the identifier is an ISBN.

Fig. 4: Using externally defined identifiers with additional properties

@prefix bf: < http://id.loc.gov/ontologies/bibframe#> .
<uri1> a premis:IntellectualEntity ;

premis:hasIdentifier <identifier1> .
<identifier1> a bf:ISBN ;

rdf:value "2-02-020908-X".

Relationships Between PREMIS Entities
Relationships between the four different PREMIS Entities (Object, Event, Agent and Rights)
are expressed by the following semantic units: linkingEventIdentifier,
linkingRightsStatementIdentifier, linkingAgentIdentifier, linkingObjectIdentifier and

9

http://id.loc.gov/ontologies/bibframe#

linkingEnvironmentIdentifier. Their mapping in RDF depends on the nature of the PREMIS
entities they are binding.

Fig. 5: Relationships between PREMIS entities

Object to Event
PROV-O properties should be used to point from an instance of premis:Object to an
instance of premis:Event . The prov:wasGeneratedBy property should be used if the
Object was created by the Event. The prov:wasUsedBy property should be used if the
Object pre-existed the Event.

Note: the alternative construct used to associate an Event to an Object by means of the
relatedEventIdentifier semantic container should use the same construct in RDF, without 4

regard to whether the Object is related to another Object through the Event or not.

Object to Rights
The dct:rights property should be used to point from an instance of premis:Object to
an instance of premis:RightsBasis .

4 See the PREMIS Data Dictionary v. 3.0 p. 15:
http://www.loc.gov/standards/premis/v3/premis-3-0-final.pdf#page=25

10

http://www.loc.gov/standards/premis/v3/premis-3-0-final.pdf#page=25

Event to Object
If the relationship from Event to Object must be stated, PROV-O properties
prov:generated (inverse property of prov:wasGeneratedBy) and prov:used
(inverse property of prov:wasUsedBy) should be used to point from an instance of
premis:Event to an instance of premis:Object . If the Object role played in the Event is
further specified by means of a linkingObjectRole semantic unit, locally defined
subproperties of these PROV-O properties or those declared at
id.loc.gov/vocabulary/preservation/eventRelatedObjectRole/ should be used.

Event to Agent
To express the relationship between Event and Agent the prov:wasAssociatedWith
property should be used to point from an instance of premis:Event to an instance of
premis:Agent . If the role played by the Agent in the Event is further specified by means of
a linkingAgentRole semantic unit, subproperties of prov:wasAssociatedWith either
declared at http://id.loc.gov/vocabulary/preservation/eventRelatedAgentRole or locally
defined should be used.

Agent to Event
If the relationship from Agent to Event must be stated, the prov:wasAssociateFor
PROV-O property (inverse property of prov:wasAssociatedWith) should be used.

Note that the relationship from an instance of premis:Event to an instance of
premis:Agent should be preferred over this one, in particular because
prov:wasAssociateFor is not an official PROV-O property. 5

Rights to Agent
The relationship between Rights and Agent should be expressed through a
prov:wasInfluencedBy property pointing from an instance of premis:RightsBasis
to an instance of premis:Agent . If the role played in the definition of the rights basis by an
Agent is further specified by means of a linkingAgentRole semantic unit, subproperties of
prov:wasInfluencedBy either declared at
http://id.loc.gov/vocabulary/preservation/rightsRelatedAgentRole or locally defined should be
used.

Note: if users need to specify the Agent affected by the permission or prohibition expressed
in the Rights Entity, a prov:influenced property may be used from an instance of
premis:Rule to an instance of premis:Agent .

5 See https://www.w3.org/TR/prov-o/#inverse-names for more information about PROV-O inverse
properties.

11

http://id.loc.gov/vocabulary/preservation/eventRelatedObjectRole/
http://id.loc.gov/vocabulary/preservation/eventRelatedAgentRole
http://id.loc.gov/vocabulary/preservation/rightsRelatedAgentRole
https://www.w3.org/TR/prov-o/#inverse-names

Agent to Object
If the Object is a Representation, a File or a Bitstream, the relSubType:isr property (is
Represented By) should be used; if the Object is an Intellectual Entity, one of the
skos:exactMatch / skos:closeMatch properties should be used depending on
whether the described Agent corresponds exactly or partially to the Environment Object
described in an Environment registry. If the Environment Object role is further specified by
means of a linkingEnvironmentRole, subproperties of premis:hasRelationship either
declared at id.loc.gov/vocabulary/preservation/linkingEnvironmentRole/ or locally defined should
be used.

Agent to Rights
If the relationship from Agent to Rights must be stated, a prov:influenced property
should be used from an instance of premis:Agent to an instance of
premis:RightsBasis .

Rights to Object
If the relationship from Rights to Object must be stated, the premis:governs property
should be used to point from an instance of premis:RightsBasis to an instance of
premis:Object .

Object

Object type (objectCategory)

Every PREMIS Object is an instance of one of the subclasses of the PREMIS Object
abstract class. The class hierarchy is represented by the diagram below:

Fig. 6: The four PREMIS object types (objectCategory)

12

http://id.loc.gov/vocabulary/preservation/linkingEnvironmentRole/

Hence, the objectCategory is specified using rdf:type .

Example:

<exampleTheses> a premis:IntellectualEntity .

Preservation Policy (preservationLevel)
PREMIS uses the preservationLevel semantic container to reference specific preservation
policies applied to an Object or a set of Objects. Implementers should use the
premis:PreservationPolicy class or one of its subclasses declared at
http:id.loc.gov/preservation/preservationLevelType (not yet established), or create locally
defined subclasses of these for every specific value of the preservationLevelType semantic
unit; instances of such classes should then be created for every specific preservation policy
and RDF constructs listed below should be used to describe them.

● The preservation policy applied to the Object should be related to it by means of a
premis:hasPolicy property.

● As values of the preservationLevelValue semantic unit are meant to be specific to
each implementer, it is recommended to create local instances of subclasses of
premis:PreservationPolicy and attach to them a free-text description with a
premis:hasNote property.

● To express the context in which the policy applies to the Object, e.g., to distinguish
between the intended preservation level and the current achievable preservation
level (preservationLevelRole semantic unit), implementers should use subproperties
of premis:hasPolicy , either declared at
http://id.loc.gov/vocabulary/preservation/preservationLevelRole or locally defined.

● The rationale for why the policy was assigned is expressed by the PREMIS semantic
unit preservationLevelRationale. In RDF, this should be expressed through a
premis:hasRationale property attached to the preservation policy, whose object
would be a string literal.

● It is recommended that implementers use a PREMIS Event if they need to record
information about the policy assignment. Hence, preservationLevelDateAssigned
should be expressed through a dct:date property attached to an instance of a
policy assignment Event (defined at
http://id.loc.gov/vocabulary/preservation/eventType/poa).

Example:

13

http://id.loc.gov/vocabulary/preservation/preservationLevelRole
http://id.loc.gov/vocabulary/preservation/eventType/poa

Fig. 7: An Object assigned with two policies

<file1> a premis:File;
presLevRole:cap <policy1> ;
presLevRole:int <policy2> ;
prov:wasUsedBy <event1> .

<policy1> a presLevType:blp ;
premis:hasNote "3 copies";
premis:hasRationale "Bit-level preservation is currently…" .

<policy2> a presLevType:lop ;
premis:hasNote "normalization to uncompressed lpcm" .

<event1> a evType:poa ;
prov:generated <policy1> , <policy2> ;
dct:date "2007-11-05T08:15:30-05:00".

Significant Properties
Significant properties are defined by the PREMIS Data Dictionary as "characteristics of a
particular object subjectively determined to be important to maintain through preservation
action". Thus, the premis:SignificantProperties class is declared a subclass of the
premis:PreservationPolicy class. Instances of the
premis:SignificantProperties class, attached to the Object thanks to a
premis:hasPolicy property, are meant to point to one or several properties of the Object
that should be considered significant, using the rdfs:value property. In the example
below, <File1> and <File2> are formatted with bold and italics, and this property has been
deemed significant. A Policy assignment Event records the date and time when a
preservation policy, aiming at preserving the Objects formatting, was applied to these
Objects. Note that <File1> has another property (frame rate) that was not deemed
significant.

14

Significant properties can be shared and linked to from multiple objects when they are a
general policy, or unique to a single object:

Example:

Fig. 8: Significant properties

<File1> a premis:File;
 premis:hasPolicy <sigProp1> ;
 prov:wasUsedBy <event1> ;
 ebucore:frameRate "25" ;
 my:hasBoldAndItalics "true" .

<File2> a premis:File ;
 premis:hasPolicy <SigProp1> ;
 prov:wasUsedBy <event1> ;
 my:hasBoldAndItalics "true" .

<SigProp1> a premis:SignificantProperties ;
 rdf:value <hasBoldAndItalics> .

<Event1> a evType:poa ;
 prov:generated <SigProp1> ;
 dct:date "2016-03-10T17:56:23Z" .

my:hasBoldAndItalics a rdfs:Property;
 rdfs:comment "Property indicating that the subject is formatted
with bold and italics" .

15

Compound Objects (compositionLevel)
When an Object is compressed, encrypted or just packaged into a container file, each "layer"
is described as a different premis:Object related to the others by means of properties
either declared at http://id.loc.gov/vocabulary/preservation/relationshipSubType or locally
defined subproperties of premis:hasRelationship . For a comprehensive description of
the way PREMIS defines compound Objects, see the "Object characteristics and
composition level: the "onion" model" section page 256 of the Data Dictionary. 6

● The compositionLevel semantic unit is expressed by a
premis:hasCompositionLevel property.

● Indicate the relationship between these different Objects, such as
○ relSubType:cot (compressed to) / relSubType:cof (compressed from)

for compressed Objects; relSubType:ent (encrypted
to)/relSubType:enf (encrypted from)

○ relSubType:hsp (has part) / relSubType:isp (is part of) for packaged
Objects.

Example:

Fig. 9: Relationship between compressed and uncompressed versions of a File

<file1> a premis:File ;
 premis:hasCompositionLevel "0" ;
 dct:format <pdfformat> ;
 premis:hasSize "500102" ;
 dct:creator <Acrobat> ;
 relSubType:cot <file2> .

6 Cf. http://www.loc.gov/standards/premis/v3/premis-3-0-final.pdf#page=266.

16

http://id.loc.gov/vocabulary/preservation/relationshipSubType
http://www.loc.gov/standards/premis/v3/premis-3-0-final.pdf#page=266

<file2> a premis:File ;
 premis:hasCompositionLevel "1" ;
 dct:format <gzipformat> ;
 premis:hasSize "197452" ;
 dct:creator <unixGzip> ;
 relSubType:cof <file1> .

Fixity
● Fixity information is attached to the Object with a premis:hasFixity property

having a range of premis:Fixity.
● The algorithm used to produce the message digest (messageDigestAlgorithm

semantic unit) should be expressed using a subclass of premis:Fixity either
declared at http://id.loc.gov/vocabulary/preservation/cryptographicHashFunctions or
locally defined.

● The messageDigest itself is attached to the instance of premis:Fixity using the
rdf:value property.

● The agent that is the creator of the message digest (messageDigestOriginator) is
expressed by an instance of prov:SoftwareAgent attached by a dct:creator
property to the instance of premis:Fixity .
Note: the messageDigestOriginator may also be declared as an implementer
Agent (cf. http://id.loc.gov/vocabulary/preservation/linkingAgentRoleEvent/imp)
involved in a message digest calculation Event (cf.
http://id.loc.gov/vocabulary/preservation/eventType/mes).
Note: implementers who would not want to specify URIs for the message digest
originator may use dce:creator and mention it as a literal.

Example:

Fig. 10: Fixity information

<file1> a premis:File ;
premis:hasFixity <file1fixity> ;
<file1fixity> a crypHashFunc:md5 ;
 rdf:value "258622b1688250cb619f3c9ccaefb7eb" ;
 dct:creator <GNUgperf31> .

17

http://id.loc.gov/vocabulary/preservation/cryptographicHashFunctions
http://id.loc.gov/vocabulary/preservation/linkingAgentRoleEvent/imp
http://id.loc.gov/vocabulary/preservation/eventType/mes

Size
To express the size of a File or a Bitstream, use premis:hasSize .

Example:

<file1> a premis:File ;
 premis:hasSize "478347923" .

Format
● A Bitstream or File format is expressed through a dct:format property pointing to

an instance of the dct:FileFormat class. This construct may be repeated if the
Object complies with multiple format definitions.

○ Note: if specifying the format by a MIME type is deemed sufficient by
implementers, the ebucore:hasMimeType property may be used in
addition to or in replacement of the mentioned construct.

● The formatName semantic unit should be expressed through a rdfs:label
property attached to the instance of dct:FileFormat .

● The formatVersion semantic unit should be expressed through a
premis:hasVersion property attached to the instance of dct:FileFormat

● The formatNote semantic unit should be expressed through a premis:hasNote
property attached to the instance of dct:FileFormat .

● formatRegistry semantic units identify the same format in another registry, or a more
generic definition of it. Depending on the degree of similarity between the two
resources, either skos:exactMatch or skos:closeMatch should be used.

○ formatRegistryRole: if the registry role must be explicitly stated, properties
defined at id.loc.gov/vocabulary/preservation/formatRegistryRole should be
used, or subproperties of skos:closeMatch should be locally defined.

○ formatRegistryName: if the registry name must be explicitly stated,
subproperties of skos:exactMatch or skos:closeMatch should be
locally defined.

Example: 7

7 The PRONOM resource stands for PDF/A-1b, so skos:exactMatch is used, whereas the LoC
registry describes the more generic PDF/A-1, so skos:closeMatch is used.

18

http://id.loc.gov/vocabulary/preservation/formatRegistryRole

Fig. 11 File format information

<file1> a premis:File ;
 ebucore:hasMimeType "application/pdf" .
 dct:format <pdfa1bformat> .

<pdfa1bformat> a dct:FileFormat ;
 rdfs:label "Acrobat PDF/A-1b - Portable Document Format" ;
 premis:hasVersion "1b" ;
 premis:hasNote "Some note about PDF/A-1b" ;
 skos:exactMatch
< http://www.nationalarchives.gov.uk/pronom/fmt/354 > ;
 skos:closeMatch
 < http://www.digitalpreservation.gov/formats/fdd/fdd000318 > .

Creating Application
Though describing an Object’s creating application is preferably done by declaring an Agent
related to a creation Event, the following constructs may alternatively be used by
implementers, namely if the Event and Agent Entities are not supported.

● Creating application is represented by an instance of prov:SoftwareAgent
related to the created Object by a dct:creator property.

● The dateCreatedByApplication semantic unit should be expressed through a
prov:generatedAtTime property attached to the Object.

● The creatingApplicationName semantic unit should be expressed through an
rdfs:label property attached to the instance of prov:SoftwareAgent .
Note: implementers who would not want to specify URIs for the creating application
may use dce:creator and mention the creating application name as a literal.

19

http://www.nationalarchives.gov.uk/pronom/fmt/354
http://www.digitalpreservation.gov/formas/fdd/fdd000318

● The creatingApplicationVersion semantic unit should be expressed through a
premis:hasVersion property attached to the instance of
prov:SoftwareAgent .

Example:

Fig. 12: Using dct:creator to link a File to its creating application

<file1> a premis:File ;
 dct:creator <distiller15> ;
 prov:generatedAtTime "2016-05-10T14:23:30Z" .

<distiller15> a prov:SoftwareAgent ;
 rdfs:label "Adobe Distiller 15.0" ;
 premis:hasVersion "15.0" .

Inhibitors
● Expressing features of the Object that could compromise preservation actions is

done by declaring instances of subclasses of the abstract premis:Inhibitor
class related to the Object by means of a premis:inhibitedBy property.

● Specifying the inhibitorType semantic unit is done by using subclasses of
premis:Inhibitor , either declared at
http://id.loc.gov/vocabulary/preservation/inhibitorType or locally defined.

● The inhibitorTarget semantic unit should be expressed by means of a
premis:inhibits property related to the instance of premis:Inhibitor and
pointing to an instance of premis:Functionality , either declared at
http://id.loc.gov/vocabulary/preservation/functionality (not yet established) or locally
defined.

● The inhibitorKey semantic unit is expressed by means of a
premis:hasKey property related to the instance of premis:Inhibitor and
pointing to a literal value of type xsd:String .

20

http://id.loc.gov/vocabulary/preservation/inhibitorType

Note: Storing passwords or decryption keys is sometimes necessary, but
raises security issues. Consider storing keys on offline media or printing them
out, and referencing their location here.

Example:

Fig. 13: A password-protected File

<file1> a premis:File ;
 premis:inhibitedBy <file1inhibitor> .

<file1inhibitor> a inhibType:pas ;
 premis:inhibits func:all ;
 premis:hasKey "pr3ci0us" .

Original Name
Expressing the name of the Object as submitted to or harvested by the repository is
expressed by means of a premis:hasOriginalName related to the Object and pointing
to a literal value of type xsd:String .

Example:

<uri1> a premis:File ;
 premis:hasOriginalName "thesis.final.20160509.docx" .

Storage
● Storage information about an Object (be it a Representation, either digital or physical,

a File or a Bitstream) should be expressed by a premis:storedAt property
pointing from the Object to an instance of premis:StorageLocation .

● The means to reference the location of the content (the contentLocationType
semantic unit) should be expressed by subclasses of premis:StorageLocation ,

21

either declared at http://id.loc.gov/vocabulary/preservation/contentLocationType or
defined locally.

● The reference to the content location itself (the contentLocationValue semantic unit)
should be expressed by the rdf:value property attached to the instance of
premis:StorageLocation and pointing to a string (a filepath, a shelfmark, etc.).

● The storage medium on which the Object is preserved (the storageMedium semantic
unit) is expressed by the premis:hasMedium property, pointing from the Object to
an instance of premis:StorageLocation to an instance of
premis:StorageMedium , either declared at
http://id.loc.gov/vocabulary/preservation/storageMedium or defined locally.

Example:

Fig. 14: Storage location information

<file1> a premis:File ;
premis:storedAt [

a premis:StorageLocation ;
rdf:value "/data/objects/files/1.tiff" ;
premis:hasMedium storMedium:mag .] .

Signature
● Signature information, which is used to authenticate the signer of an object and/or

the information contained in the object, should be expressed by a
premis:hasSignature property attached to an instance of premis:File or
premis:Bitstream pointing to an instance of premis:Signature .

● The authority responsible for generating the signature, mentioned by a signer
semantic unit, should be expressed by an Agent involved in a digital signature
generation Event by means of an evRelAgRole:imp property.
Note: Alternatively, if implementers do not use the Agent and Event Entities, it may
be expressed by a dce:creator property attached to the instance of
premis:Signature and pointing to a literal.

22

http://id.loc.gov/vocabulary/preservation/contentLocationType
http://id.loc.gov/vocabulary/preservation/storageMedium

● The encryption and hash algorithm used to generate the signature, mentioned in a
signatureMethod semantic unit, should be expressed by subclasses of
premis:Signature either declared at
http://id.loc.gov/vocabulary/preservation/signatureMethod or locally defined.

● The value generated from the application of a private key to a message digest,
mentioned in a signatureValue semantic unit, should be expressed by an
rdf:value property attached to the instance of premis:Signature and pointing
to a literal.

● The public key used to verify that the signature value is valid (keyInformation
semantic unit) should be expressed by a premis:hasKey property attached to the
instance of premis:Signature and pointing to a literal.

● Information conveyed by the signatureEncoding semantic unit, i.e. encoding used for
the values of rdf:value (signatureValue) and premis:hasKey (keyInformation),
should be expressed by a premis:hasEncoding property attached to the instance
of premis:Signature and pointing to an instance of
premis:SignatureEncoding , either declared at
http://id.loc.gov/vocabulary/preservation/signatureEncoding or locally defined.

● Operations to be performed in order to validate the digital signature
(signatureValidationRules semantic unit) should be expressed by a
premis:hasValidationRules property attached to an instance of
premis:Signature .
Note: this property is intended to point to a free-text description of the validation
rules. If implementers need to point to a resource documenting the validation rules,
they may use premis:hasDocumentation instead.

● Additional information about the generation of the signature (signatureProperties
semantic unit) should be expressed either by properties of a digital signature
generation Event (date, Agents involved, etc.)
Note: implementers who would not implement the Event entity may use a
premis:hasNote property attached to the instance of premis:Signature .

Example:

Fig. 15: Digital signature information

23

http://id.loc.gov/vocabulary/preservation/signatureMethod
http://id.loc.gov/vocabulary/preservation/signatureEncoding.html

<file1> a premis:File ;
 premis:hasSignature <file1Signature> ;
 prov:wasUsedBy <event1> .

<file1Signature> a sigMethod:dsa-sha1 ;
 rdf:value "UFJFTUlTIGlzI...HRoZSBuZXcgYmxhY2su" ;
 premis:hasEncoding sigEncoding:base64 ;
 premis:hasKey "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBi..." ;
 premis:hasValidationRules "Canonicalization method is..." ;
 prov:wasGeneratedBy <event1>.

<event1> a evType:dsg ;
 prov:endedAtTime "2014-09-07T23:23:34Z" ;
 evRelAgRole:imp <ICJ> ;
 evRelAgRole:exe <JSignPdf> :
 prov:generated <file1Signature> .

<JSignPdf> a premis:SoftwareAgent ;
 rdfs:label "JSignPdf" ;
 premis:hasVersion "1.6.0" .

<ICJ> a premis:Organization .

Environment
An Environment is any kind of technology (software, hardware or a combination of both)
supporting an Object in some way (rendering, executing it, etc.). Given that an Object can be
stored by a repository as a historical asset but considered an Environment by another
repository, being an Environment is not an intrinsic characteristic of the Object. Therefore,
an Object is not explicitly declared as Environment, but is considered as so if an Object
declares a dependency relationship to it. Any category of Object can be considered an
Environment; however, the following constructs are applicable only to Environments
described as Intellectual Entities.

● The environmentFunction semantic container and its semantic units are expressed
through subclasses of premis:IntellectualEntity , defined at
id.loc.gov/vocabulary/preservation/environmentFunctionType.

● environmentName is expressed by the rdfs:label property.
● environmentVersion is expressed by a premis:hasVersion property.
● environmentOrigin mentions the producer of the Environment. It is expressed by a

dct:creator property. The object of such property is expected to be an instance of
foaf:Person or foaf:Organization .

● environmentDesignationNote is considered a free-text note about the Environment
and thus expressed by a premis:hasNote property.

24

http://id.loc.gov/vocabulary/preservation/environmentFunctionType

● environmentRegistry semantic units identify the same Environment in another
registry. Depending on the degree of similarity between the two resources, either
skos:exactMatch or skos:closeMatch should be used.

○ environmentRegistryRole: if the registry role must be explicitly stated,
properties defined at
id.loc.gov/vocabulary/preservation/environmentRegistryRole should be used,
or subproperties of skos:closeMatch should be locally defined.

○ environmentRegistryName: if the registry name must be explicitly stated,
subproperties of skos:exactMatch or skos:closeMatch should be
locally defined.

1. Example: WordPerfect 5.1 for DOS

Fig. 16 A software application described as an Environment

<environment1> a envFuncType:soa ;
rdfs:label "WordPerfect 5.1 for DOS" ;
premis:hasVersion "5.1" ;
premis:hasNote "Some detail" ;
dct:creator <WordPerfect Corporation> ;
skos:closeMatch <https://www.wikidata.org/wiki/Q934452>

.

<WordPerfect Corporation> a foaf:Organization .

Relationships between Objects
Relationships between PREMIS Objects should be expressed by subproperties of the
premis:hasRelationship property either declared at
http://id.loc.gov/vocabulary/preservation/relationshipSubType or locally defined. In most
cases, one of these properties is sufficient to express the nature of the relationship between
two PREMIS Objects.

25

http://id.loc.gov/vocabulary/preservation/environmentRegistryRole
http://id.loc.gov/vocabulary/preservation/relationshipSubType

Example: a set of Files represents a digitized book.

Fig. 17: Relationships between Intellectual Entities, Representations and Files

<file1> a premis:File ;
relSubType:isp <rep1> .

<file2> a premis:File ;
 relSubType:isp <rep1> .

<rep1> a premis:Representation ;
 relSubType:rep <IE1> .

<IE1> a premis:IntellectualEntity ;
 dct:title "Les Fleurs du mal" .

Example: a repository has a file from which it creates a derivative.

Fig. 18: Relationship between a File and its derivative

<file1> a premis:File ;
 dct:format <tiffformat> ;
 relSubType:iso <file2> .

<event1> a evType:mig ;

26

 prov:endedAtTime "2017-11-03T11:46:16+02:00" ;
 evRelObjRole:sou <file1> ;
 evRelObjRole:out <file2> .

<file2> a premis:File ;
 dct:format <jpgformat> ;
 relSubType:hss <file1> .

For complex relationships involving Environments (particularly dependency relationships), a
more complex structure is needed to specify the Environment purpose (which action the
Environment is meant to perform on the Object) and characteristic (the extent to which the
Environment support its purpose). An instance of premis:Dependency should in this case
be created to bear premis:hasPurpose and premis:hasCharacteristic properties.

Example: a repository preserves WordPerfect for DOS files and uses PREMIS to model an
environment stack for rendering the files.

Fig. 19: A rendering environment for a File

<file1> a premis:File ;
 premis:hasDependency <Dependency1> .

<Dependency1> a premis:Dependency ;
 relSubType:req <WordPerfectForDos> ;
 premis:hasPurpose func:all ;
 premis:hasCharacteristic envChar:rec .

27

<WordPerfectForDos> a envFuncType:soa ;
 relSubType:idp <MicrosoftDos> .

<MicrosoftDos> a envFuncType:ops ;
 relSubType:req <dependency2> .

<dependency2> a premis:Dependency ;
 relSubType:iem <vDos> ;
 premis:hasCharacteristic envChar:kno .

<vDos> a envFuncType:soa ;
 relSubType:idp <MicrosoftWindows> .

<MicrosoftWindows> a envFuncType:ops .

Objects sequencing (relatedObjectSequence)

Use edm:isNextInSequence . (For aggregation-specific ordering, use ore:Proxy).

28

Event
Event is one of the four PREMIS Entities. The corresponding premis:Event class is a
subclass of prov:Activity .

● The eventType semantic unit should be expressed by subclasses of
premis:Event , either declared at
http://id.loc.gov/vocabulary/preservation/eventType or locally defined.

● The eventDateTime semantic unit should be expressed by prov:startedAtTime
or prov:endedAtTime properties or both, if a date and time range has to be
specified.
Note: in the case where legacy data must be transformed into RDF and if the
eventDateTime value cannot be determined as the beginning or the end of an Event,
a dct:date property may be used to express eventDateTime instead of PROV-O
properties.

● The eventDetail semantic unit is used to mention a free-text note about the Event.
The property premis:hasNote should be used.

● The eventOutcome semantic unit is used to mention the Event result in a coded way.
The property premis:hasOutcome should be attached to the Event and point to an
inidividual of a premis:OutcomeStatus class, either declared at
http://id.loc.gov/vocabulary/preservation/eventOutcome (not yet established) or
locally defined.
Note: if the Event generated a non-PREMIS Object resource (a
premis:PreservationPolicy , premis:Signature , premis:Fixity , etc.),
implementers may use prov:generated to specify the relationship between the
Event and this resource. 8

● The eventOutcomeDetailNote semantic unit provides additional free-text information
about the Event outcome. It should be expressed through a
premis:hasOutcomeNote property attached to the Event and pointing to a string
value.

Example 1: a compression Event generating a compressed File with the 7zip tool.

8 See examples of this construct in sections on Policy, Signature and Significant properties
above.

29

http://id.loc.gov/vocabulary/preservation/eventType

Fig. 20: A compression Event

<event1> rdf:type evType:com ;

dct:date "2017-01-21T01:46:16Z" ;
premis:hasNote "[Compression parameters]" ;
evRelObjRole:sou <uncompressed_file> ;
evRelObjRole:out <compressed_file> ;
evRelAgRole:imp <NRI> ;
evRelAgRole:exe <7zip> .

<NRI> a premis:Organization .

<7zip> a premis:SoftwareAgent .

Example 2: an Event tracking metadata extraction from a file by Jhove

30

Fig. 21: A metadata extraction Event

<event2> rdf:type evType:mee ;
prov:endedAtTime "2015-07-23T16:31:26.887+02:00" ;
evRelAgRole:exe <jhove1_11> ;
premis:hasOutcome evOutcome:com ;
premis:hasOutcomeNote "Well-Formed and valid" .

<jhove1_11> a premis:SoftwareAgent .

31

Agent
Agent is one of the the four PREMIS Entities. Its corresponding class, premis:Agent , is an
abstract class, subclass of both foaf:Agent and prov:Agent .

● The agentType semantic unit should be expressed by subclasses of
premis:Agent : premis:SoftwareAgent , premis :HardwareAgent ,
premis:Person or premis:Organization .

● The agentName semantic unit should be expressed by a foaf:name property for
instances of premis:Organization and premis:Person , or rdfs:label for
instances of premis:SoftwareAgent and premis:HardwareAgent .

● The agentVersion semantic unit should be expressed by a premis:hasVersion
property.

● The agentNote semantic unit should be expressed by a premis:hasNote property.
● Note that the premis namespace is used for the agentType only when the Agent is

connected to premis:Event , premis:RightsBasis or premis:Rule . If the
Agent is attached to an Object as a creating application or to premis:Fixity
using dct:creator , prov:SoftwareAgent Is used instead.

Example:

Fig. 22: A hardware Agent

<hardware1> a premis:HardwareAgent ;
rdfs:label "Bookeye 4" ;
premis:hasVersion "V1A" ;
premis:hasNote "serial number: 00073236706e" .

32

Rights
Unlike the three other PREMIS Entities, the Rights Entity has no equivalent class in RDF.
Instead, the Rights Entity is represented by an instance of the premis:RightsBasis
class and, optionally, by an instance of premis:RightsStatus expressing the status of
the Object regarding the rights basis it is (or was) governed by.

For the relationship between Rights and Agent entities, see section "Rights to Agent" above.

Fig. 23: A model for the PREMIS Rights entity

Rights Basis
Specifying the rights basis of any rights statement is mandatory. The rights basis governing
the Object should be expressed by a dct:rights property pointing to an instance of one of
the subclasses of the premis:RightsBasis abstract class (premis:Copyright ,
premis:Statute , premis:License , premis:InstitutionalPolicy or a locally
defined class for other types of rights basis).

● Applicable dates are specific to the Object affected by the rights basis. See the
section Rights status below.

● If a free-text note about the rights basis must be added, a premis:hasNote
property should be attached either to the instance of a subclass of the
premis:RightsBasis class or to the instance of the premis:RightsStatus

33

class, depending on whether the note applies to the rights basis or is specific to the
Object.

● The jurisdiction to which the rights basis applies should be expressed by means of a
premis:hasJurisdiction property attached to the instance of a subclass of the
premis:RightsBasis class.

● Documentation concerning the rights basis should be expressed by means of a
premis:hasDocumentation property pointing from an instance of
premis:RightsBasis to an instance of premis:Documentation . If the
documentation role has to be mentioned, implementers should define locally
subproperties of premis:hasDocumentation .

● If the copyright status of the Object must be specified, subclasses of
premis:RightsStatus should be used, either declared at
http://id.loc.gov/vocabulary/preservation/copyrightStatus or locally defined.

● License terms should be expressed by means of a premis:hasTerms property
attached to the instance of premis:License .

● Statute citation should be expressed by means of a premis:hasCitation
property attached to the instance of premis:Statute .

● Implementers should define locally subclasses of the premis:RightsBasis class
if the rights statement is not based on copyright, statute, license nor institutional
policy.

Copyright example:
<rightsBasis1> a premis:Copyright ;

premis:hasJurisdiction < http://ontologi.es/place/US > .

License example:
<rightsBasis2> a premis:Licence ;

premis:hasDocumentation <documentation1> ;
premis:hasTerms "Do not, under any circumstances, etc." .

Statute example:
<rightsBasis3> a premis:Statute ;

premis:hasJurisdiction < http://ontologi.es/place/DE > ;
premis:hasCitation "Gesetz über die deutsche

Nationalbibliothek vom 22. Juni 2006(DNBG)" ;
premis:hasNote "Legal Deposit Law in Germany" .

Institutional policy example:
<rightsBasis4> a premis:InstitutionalPolicy ;

premis:hasNote "80-year rule" ;
prov:wasInfluencedBy <hul> .

Note: in the case a rights statement defined at rightsstatements.org/ applies to an Object,
such rights statement may replace an instance of premis:RightsBasis and be the basis
of any permission or prohibition.

Example:

34

http://id.loc.gov/vocabulary/preservation/copyrightStatus
http://ontologi.es/place/US
http://ontologi.es/place/DE
http://rightsstatements.org/

<obj3> dct:rights < http://rightsstatements.org/vocab/InC/1.0/ > .

< http://rightsstatements.org/vocab/InC/1.0/ > a premis:Copyright .

Rights status
If the Object status regarding the rights basis has to be specified, an instance of
premis:RightsStatus should be attached to the Object by means of a
premis:hasRightsStatus property. It may be necessary to specify the relationship
between the status and the rights basis, especially in the case of multiple rights basis
affecting simultaneously or successively the Object; in such case, a premis:hasBasis
property should point from the instance of premis:RightsStatus to the instance of
premis:RightsBasis .

● Applicable dates should be mentioned by means of premis:startDate and
premis:endDate properties attached to the instance of premis:RightsStatus .
Note: though the use of standard conventions like ISO 8601 is recommended to
express date and time values, the range of premis:startDate and
premis:endDate is defined to be rdfs:Literal to accommodate uncertainty
and open dates. 9

● The status determination date should be specified by means of a
premis:hasDeterminationDate attached to the instance of
premis:RightsStatus .

Example:

Fig. 24: The rights status of an Intellectual Entity

9 For a standard expression of uncertain or open dates, see the Extended Date/Time Format
(http://www.loc.gov/standards/datetime/).

35

http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
http://www.loc.gov/standards/datetime/

<object1> a premis:IntellectualEntity ;

dct:rights <rightsBasis1> ;
premis:hasRightsStatus [

a premis:RightsStatus ;
premis:startDate "2005-05-29" ;

 premis:endDate "OPEN" ;
premis:hasDeterminationDate "2011-06-19" ;
premis:hasBasis <rightsBasis1> .] .

<rightsBasis1> a premis:InstitutionalPolicy.

Rule (rightsGranted)
The premis:Rule class represents either a permission or a prohibition to perform an
action. An instance of premis:Rule is attached to an instance of premis:RightsBasis
by means of a premis:allows or premis:prohibits property, depending on whether
the action is allowed or prohibited to the repository or to an Agent.

● The rightsGrantedNote semantic unit should be expressed by a premis:hasNote
property attached to the instance of premis:Rule .

● The rule applicable dates (the termOfGrant semantic unit) should be expressed by
means of premis:startDate and premis:endDate properties attached to the
instance of premis:Rule .

● The action allowed or prohibited by the rule should be expressed by a premis:act
property pointing to an instance of premis:Action , either declared at
http://id.loc.gov/vocabulary/preservation/actionsGranted or locally defined.

● Other restrictions than the rule applicable dates applying to the permission or
prohibition should be expressed by the odrl:constraint property pointing to an
instance of odrl:Constraint . 10

Note: however, if the restriction cannot be expressed by the ODRL vocabulary or in the case
of a mapping from XML legacy data to RDF, a premis:hasRestriction property may be
used to attach a free-text description of the restriction to the instance of premis:Rule .

Example 1 (an institutional policy allowing <agent1> to reproduce, modify and migrate an
Object, but prohibiting its use for 80 years):

10 See https://www.w3.org/TR/odrl-model/#constraint for further information about ODRL Constraints.

36

http://id.loc.gov/vocabulary/preservation/actionsGranted
https://www.w3.org/TR/odrl-model/#constraint

Fig. 25: Attaching Rules to a RightsBasis

<rightsBasis5> a premis:InstitutionalPolicy ;

premis:allows <rule1> ;
premis:prohibits <rule2> .

<rule1> a premis:Rule;
premis:act acGranted:mig ;
premis:act acGranted:mod ;
premis:act acGranted:rep ;
prov:influenced <agent1> .

<rule2> a premis:Rule
premis:act acGranted:use ;
premis:startDate "2011-06-19" ;
premis:endDate "2091-06-19" ;
prov:influenced <agent1> .

<agent1> a premis:Person .

Example 2 (a license granted by <agent1> allowing the repository to make only 3 copies of
the Object for preservation purposes):

37

Fig. 26: Using Open Digital Rights Language (ODRL) to further refine a Rule

<rightsBasis6> a premis:License ;
rightsRelAgRole:gra <agent1> ;
premis:allows <rule1> .

<rule1> a premis:Rule ;
premis:act acGranted:rep ;
odrl:constraint [

a odrl:Constraint ;
odrl:count "3" ;
odrl:operator odrl:lteq .] .

<agent1> a premis:Person .

38

