
SEMANTIC UNITS PERTAINING TO OBJECTS

Object entity

� Aggregates characteristics relevant to the
preservation management of the object

� Semantic units may not all be applicable to each
type of object (representation, file, bitstream)

Object entity

� Main types of information

1.1. identifier

1.5. object characteristics

1.5.5. creation information

1.8. software and hardware envmnt.

1.9. digital signatures

1.10. relationships to other objects

1.11-13. links to other types of entity

1.2. objectCategory

� objectCategory

• Values: representation, file, bitstream

1.3. preservationLevel

• What preservation treatment/strategy the
repository plans for this object

• Varying preservation options dependent on
factors such as value, uniqueness,
preservability of format

• A business rule only relevant in a given
repository

• Optional for representation and file

1.3. preservationLevel

• preservationLevelValue

• Examples: full, bit-level, fully supported with
future migration

1.3. preservationLevel

• Additional (optional) semantic units:

• Role: specifies context, e.g. if more than
one

• Examples: intention, requirement or
capability

• Rationale: important, when
preservationLevelValue differs from usual
repository policy, e.g. in case of a defective
file.

• Date: Date and Time when the
preservationLevel was assigned to the
object

1.4. significantProperties

� Applicable to representation, file and bitstream

� Characteristics subjectively considered important
– e.g embedded JavaScript in PDF might be considered as
important while Links in PDF are considered as unimportant and
need not be preserved

� May help to measure preservation success

� Container for components:

• significantPropertiesType - object property

• significantPropertiesValue

• significantPropertiesExtension

1.4. significantProperties

� May apply to all objects of a certain class or may
be unique to each individual object

� Determine business rules of the repository

� Not an intrinsic property of an object;
a particular archive's assessment of which of the
object's properties need to persist over time;
context specific

� Related to the preservation strategy chosen by
the archive

1.4. significantProperties

� Listing significant properties implies that the
repository plans to preserve those properties and
would note any modifications to them in
eventOutcome

� Further work is needed in determining and
describing significant properties

Examples of significantProperties

Example 1:
significantPropertiesType = “behavior”
significantPropertiesValue = “editable”

Example 2:
significantPropertiesType = “page width”
significantPropertiesValue = “210 mm”

Example 3, a TIFF file:
significantPropertiesType = “Color space”
significantPropertiesValue = “Color accuracy
(Adobe RGB 1998)”

Extension containers (general)
(e.g. significantPropertiesExtension, creatingApplicationExtension…)

� New in Premis 2.0

� Contains externally defined semantic units

� Allows to extend PREMIS with semantic units
which are more granular, non-core or out of
scope of the PREMIS data dictionary

� Data in the container may replace, refine or be
additional to the appropriate PREMIS semantic
unit

� One schema per extension; if more schemas are
needed, the extension element needs to be
repeated

1.5. objectCharacteristics

� Applicable only to file and bitstream
(although some have needed it for
representation)

� Technical properties common to all/most file
formats,
not format specific

1.5. objectCharacteristics

� Container for components:

• compositionLevel

• fixity

• size

• format

• creatingApplication

• Inhibitors

• objectCharacteristicsExtension

1.5.2. fixity

� Information used to verify whether an object has
been altered

� Compare message digests (“checksums”)
calculated at different times

� Automatically calculated and recorded by
repository

1.5.2. fixity

Container for

� messageDigestAlgorithm:
controlled vocabulary, examples:

• SHA-1

• MD5

� messageDigest:
output of message digest algorithm;
checksum

� messageDigestOriginator:
agent that created original message digest;
could be a string or a pointer

1.5.2. fixity

Example:

fixity

messageDigestAlgorithm= Adler-32

messageDigest= 7c9b35da

messageDigestOriginator= OCLC

1.5.4. format

� Identifies the format of a file or bitstream

� Container semantic unit

� Preservation activities depend on detailed and
accurate knowledge about formats

� Should be ascertained by repository on ingest
(for example, using JHOVE)

� May be a format name (formatDesignation) or
a pointer into a registry (formatRegistry)

� Changed to repeatable in PREMIS version 2.0 to
associate a format designation with a particular
format registry

formatDesignation and formatRegistry

� formatDesignation

• Identifies the format of an object by
formatname and formatversion

• Format may be a matter of opinion: Is it text,
xml, or METS?

• MIME type is widely used authority list

• May need more granularity

• may be multipart (tiff 6.0/geotiff)

formatDesignation and formatRegistry

� formatRegistry

• Identifies format by reference to an entry
in a format registry

• Detailed specifications on formats may be
contained in a future format registry

• formatRegistryName,
formatRegistryKey,
formatRegistryRole

• Role includes purpose or expected use

� formatNote – free text

1.5.4. Examples of format

formatDesignation
formatName=eps
formatVersion=2.0

formatRegistry
formatRegistryName=PRONOM
formatRegistryKey=fmt/124
formatRegistryRole=Basic

1.5.4. Examples of format

formatDesignation
formatName=PDF
formatVersion=1.5

formatRegistry
formatRegistryName=

LC digital format descriptions
formatRegistryKey=fdd000123
formatRegistryRole=assessment

1.5.5. creatingApplication

� Information about the application(s) which
created a file/bitstream

� Software bugs are not uncommon.

� May affect the integrity of content or create
artifacts.

� In a repository it might be useful to search for all
files created by a certain version of an application
to fix them.

1.5.5. creatingApplication

� creatingApplicationName

� creatingApplicationVersion

� dateCreatedByApplication

• Actual or approximated date and time when
the object was created

� creatingApplicationExtension

• Specified metadata schema can be included
instead or in addition to PREMIS defined
semantic units

• Additional schema might contain
values from a controlled list,
point to a registry….

1.5.6. inhibitors

� Features of the object intended to inhibit
access, use or migration

� It is necessary to record the kind of encryption
and the access key to allow future use of the
object

� Applicable to file and bitstream

1.5.6. inhibitors

� inhibitorType

• Inhibitor method employed, e.g. “DES”,
“password protection”

� inhibitorTarget

• The content or function protected, e.g.
“function: print”

� inhibitorKey

• The decryption key or password

• Needs to meet security requirements

1.5.6. inhibitors

Example:

inhibitors

inhibitorType=DES

inhibitorTarget=all content

inhibitorKey=[DES encryption key]

1.5.7. objectCharacteristicsExtension

� Container to include externally defined
semantic units – e.g. for more granularity.

� Might contain format specific metadata for a file –
e.g. technical metadata for still images (MIX)

� Not a replacement for units specified in PREMIS

1.5.1. compositionLevel

� An indication of whether the object is
subject to one or more processes of
decoding or unbundling

� How to describe layers of encodings so they can
be correctly reversed

• Treat each layer as a “composition level”

• Repeat description of object characteristics for
each composition level

1.5.6. compositionLevel

� A file with no compression and no encryption has
compositionLevel 0 (zero)

� Each layer of encoding results in new format and
incremented compositionLevel

� Only applies if object is encrypted or
compressed

� Value is an integer

Files again

� FILE = a named and ordered sequence of bytes
that is known by an operating system.

• chapter1.pdf
• photo.tiff
• mapofBerlin.jp2

� Can be zero or more bytes

� Has a file format

� Has access permissions and file system statistics
such as size and modification date

But some files aren’t that simple

� format = PDF

� size = 500,000
bytes

� messageDigest =
[something]

chapter1.pdf chapter1.gz
Unix gzip
utility

�format = gzip

�size = 324,876
bytes

�messageDigest =
[something else]

1.5.1. compositionLevel

1.2format

Version

format

Designa-
tion

format

PDFformat

Name

format

Designa-
tion

format

500000 size

Submittermessage
Digest

Originato

fixity

[big
string]

message
Digest

fixity

SHA-1message
Digest

Algorithm

fixity

0composition
Level

chapter1.pdf

1.2.3format

Version

format

Designa-
tion

format

gzipformat

Name

format

Designa-
tion

format

324876 size

Repositorymessage
Digest

Originator

fixity

[another

string]

message
Digest

fixity

SHA-1message
Digest

Algorithm

fixity

1composition
Level

chapter1.pdf.gz

1.5.1. compositionLevel

� Remember: Composition level increments only
when you have a single file object with multiple
successive encodings.

Creation information

1.5.5. creatingApplication

• Container for information about the
application and the context in which an
object was created

• creatingApplicationName

• creatingApplicationVersion

• dateCreatedByApplication

• creatingApplicationExtension

• Part of objectCharacteristics

Creation information

1.6. originalName

� Name of object as submitted to or harvested
by repository

� Supplements repository supplied names

� Useful for identification of objects for clients or
outside partners

� Applicable to files and representations

1.7. storage

� How and where the object is stored

� Container for
contentLocation
storageMedium

� May be repeated if more than one identical copies
in different locations
that are managed together

1.7. storage

� contentLocation

• Information needed to retrieve a file from a
system or a bitstream from within a file

• Subunits type and value

• Could be fully qualified path or identifier used
by storage system; for bitstream a byte offset

� storageMedium

• Physical medium on which the object is stored

• Useful for media management
(e.g. media migration)

• May be name of system that knows the
medium

• Examples: hard disk, TSM

1.7. Example of storage

storage

contentLocation

contentLocationType=FDA

contentLocationValue=fda/prod/data/out/classa/
DF-2005-001002

storageMedium=3590 [a type of tape unit]

1.8. Environment

� What is needed to render or use an object

• Operating system

• Application software

• Computing resources

� Why is obligation optional?

• Need for this information may differ in
preservation strategies (e.g., may be
unneeded for bit-level preservation)

• We currently lack practical methods to collect
and store this information

1.8. Environment

� Relevance to long-term preservation:
Ability to render an object and interact with its
content may depend on knowing these technical
details

� Applies to all types of object
(representation, file, bitstream)

1.8. Environment semantic units

� environmentCharacteristic

• Multiple environments can support an object,
but often not equally well

• Suggested values: unspecified, known to work,
minimum, recommended

• Repository does not need to record all possible
environments

1.8. Environment semantic units

� environmentPurpose

• Use supported by the specified environment

• Suggested values: render, edit

• example: for x.pdf
Adobe Acrobat (edit)
Adobe Reader (render)

1.8. Environment semantic units (cont.)

� software and hardware
• identify by name, version, type
(broad category)

• Many may apply;
at least one should be recorded

� dependency
• non-software component or file needed
• dependency vs. swDependency
• e.g. fonts, schemas, stylesheets
• name and identifier

1.8. Environment semantic units (cont.)

� environmentNote
• Any additional information
• Should not be used as substitute for more
rigorous description

� environmentExtension
• Replace or extend PREMIS semantic units
• In an operation environment a link to an
appropriate system/emulator can be stored.

1.8. Environment example: ETD (PDF file)

� environmentCharacteristic=known to work

� environmentPurpose=render

� software/swName= Mozilla Firefox

� software/swVersion= 1.5

� software/swType=renderer

� swOtherInformation=requires swDependencies as
plug-ins

� software/swDependency= Adobe Acrobat Reader
7.0

� software/swDependency= RealPlayer 10

1.8. Environment example: ETD (PDF file)

� software/swName= Windows NT

� software/swVersion=5.0 (2000)

� software/swType=operatingSystem

� hardware/hwName=Intel Pentium III

� hardware/hwType=processor

� dependency/dependencyName=Mathematica 5.2
True Type math fonts

1.8. Environment registries

� Information may be complex and increasingly
granular

� Information often applies to whole class of
objects

� PREMIS does not assume the existence of an
environment registry, but defines the information
that would be needed in one

1.8. Environment registries

� PRONOM has some elements of environment
registry

• for any file extension, gives list of software
that can

• create

• render

• identify

• validate

• extract metadata from

1.9. Digital signatures

� In a transaction,
verifies the identity of the sender and
that the file was unchanged in transmission.

� Some archives sign stored objects for verification
of authenticity in the future.

1.9. Digital signatures

� PREMIS digital signature semantic units are
based on W3C’s XML Signature Syntax and
Processing

• de facto standard for encoding signature
information

• PREMIS adopts structure/semantics where
possible

• Some departures: e.g., PREMIS permits a
given signature to be a property of only 1
object.

1.9. signatureInformation Container

� Who signed it?

• signer (name or pointer to an Agent)

� How was it signed?

• signatureInformationEncoding (e.g., Base64)

• signatureMethod (e.g., DSA-SHA1)

1.9. signatureInformation Container

� How can we validate it?

• signatureValidationRules (could be a pointer to
documentation for the validation procedure)

• signatureProperties (additional information)

• keyInformation: the signer’s public key and
other info

• Type: e.g., DSA, RSA, PGP, etc.

• Other info: e.g., certificate, revocation list,
etc.

� And of course, the signature itself

1.9. signatureInformation example

signatureInformation

signatureInformationEncoding=base64

signer=Florida Digital Archive

signatureMethod=RSA-SHA1

signatureValue=MC0CFFrVLtRlkMc3Daon4BqqnkhCOTFEALE=

signatureValidationRules=T1=C1

signatureProperties=2003-03-19T12:25:14-05:00

keyInformation

keyType=x509v3-sign-rsa2

keyValue=<DSAKeyValue>

keyvalue

</DSAKeyValue>

