SEMANTIC UNITS PERTAINING TO OBJECTS

Object entity

- Aggregates characteristics relevant to the preservation management of the object
- Semantic units may not all be applicable to each type of object (representation, file, bitstream)

Object entity

- Main types of information
 - 1.1. identifier
 - 1.5. object characteristics
 - 1.5.5. creation information
 - 1.8. software and hardware envmnt.
 - 1.9. digital signatures
 - 1.10. relationships to other objects
 - 1.11-13. links to other types of entity

1.2. objectCategory

- objectCategory
 - Values: representation, file, bitstream

1.3. preservationLevel

DDFM

- What preservation treatment/strategy the repository plans for this object
 - Varying preservation options dependent on factors such as value, uniqueness, preservability of format
 - A business rule only relevant in a given repository
 - Optional for representation and file

1.3. preservationLevel

• preservationLevelValue

• Examples: full, bit-level, fully supported with future migration

1.3. preservationLevel

- Additional (optional) semantic units:
 - Role: specifies context, e.g. if more than one
 - Examples: intention, requirement or capability
 - Rationale: important, when preservationLevelValue differs from usual repository policy, e.g. in case of a defective file.
 - Date: Date and Time when the preservationLevel was assigned to the object

1.4. significantProperties

DDFM

- Applicable to representation, file and bitstream
- Characteristics subjectively considered important - e.g embedded JavaScript in PDF might be considered as important while Links in PDF are considered as unimportant and need not be preserved
- May help to measure preservation success
- Container for components:
 - significantPropertiesType object property
 - significantPropertiesValue
 - significantPropertiesExtension

1.4. significantProperties

- May apply to all objects of a certain class or may be unique to each individual object
- Determine business rules of the repository
- Not an intrinsic property of an object; a particular archive's assessment of which of the object's properties need to persist over time; context specific
- Related to the preservation strategy chosen by the archive

1.4. significantProperties

- Listing significant properties implies that the repository plans to preserve those properties and would note any modifications to them in eventOutcome
- Further work is needed in determining and describing significant properties

Examples of significantProperties

```
Example 1:
  significantPropertiesType = "behavior"
  significantPropertiesValue = "editable"
Example 2:
  significantPropertiesType = "page width"
  significantPropertiesValue = "210 mm"
Example 3, a TIFF file:
  significantPropertiesType = "Color space"
  significantPropertiesValue = "Color accuracy
  (Adobe RGB 1998)"
```

Extension containers (general)

(e.g. significantPropertiesExtension, creatingApplicationExtension...)

- New in Premis 2.0
- Contains externally defined semantic units
- Allows to extend PREMIS with semantic units which are more granular, non-core or out of scope of the PREMIS data dictionary
- Data in the container may replace, refine or be additional to the appropriate PREMIS semantic unit
- One schema per extension; if more schemas are needed, the extension element needs to be repeated

1.5. objectCharacteristics

- Applicable only to file and bitstream (although some have needed it for representation)
- Technical properties common to all/most file formats, not format specific

1.5. objectCharacteristics

- Container for components:
 - compositionLevel
 - fixity
 - size
 - format
 - creatingApplication
 - Inhibitors
 - objectCharacteristicsExtension

1.5.2. fixity

- Information used to verify whether an object has been altered
- Compare message digests ("checksums") calculated at different times
- Automatically calculated and recorded by repository

1.5.2. fixity

Container for

messageDigestAlgorithm;

controlled vocabulary, examples:

- SHA-1
- MD5

messageDigest;

output of message digest algorithm; checksum

messageDigestOriginator: agent that created original message digest; could be a string or a pointer

1.5.2. fixity

Example:

fixity

messageDigestAlgorithm= Adler-32 messageDigest= 7c9b35da messageDigestOriginator= OCLC

1.5.4. format

Identifies the format of a file or bitstream

- Container semantic unit
- Preservation activities depend on detailed and accurate knowledge about formats
- Should be ascertained by repository on ingest (for example, using JHOVE)
- May be a format name (formatDesignation) or a pointer into a registry (formatRegistry)
- Changed to repeatable in PREMIS version 2.0 to associate a format designation with a particular format registry

formatDesignation and formatRegistry

formatDesignation

- Identifies the format of an object by formatname and formatversion
- Format may be a matter of opinion: Is it text, xml, or METS?
- MIME type is widely used authority list
- May need more granularity
- may be multipart (tiff 6.0/geotiff)

formatDesignation and formatRegistry

formatRegistry

- Identifies format by reference to an entry in a format registry
- Detailed specifications on formats may be contained in a future format registry
- formatRegistryName, formatRegistryKey, formatRegistryRole
- Role includes purpose or expected use
- formatNote free text

1.5.4. Examples of format

formatDesignation formatName=eps formatVersion=2.0

formatRegistry formatRegistryName=PRONOM formatRegistryKey=fmt/124 formatRegistryRole=Basic

1.5.4. Examples of format

```
formatDesignation
formatName=PDF
formatVersion=1.5
```

```
formatRegistry
formatRegistryName=
LC digital format descriptions
formatRegistryKey=fdd000123
formatRegistryRole=assessment
```

1.5.5. creatingApplication

- Information about the application(s) which created a file/bitstream
- Software bugs are not uncommon.
- May affect the integrity of content or create artifacts.
- In a repository it might be useful to search for all files created by a certain version of an application to fix them.

1.5.5. creatingApplication

DDFM

- creatingApplicationName
- creatingApplicationVersion
- dateCreatedByApplication
 - Actual or approximated date and time when the object was created
- creatingApplicationExtension
 - Specified metadata schema can be included instead or in addition to PREMIS defined semantic units
 - Additional schema might contain values from a controlled list, point to a registry....

1.5.6. inhibitors

- Features of the object intended to inhibit access, use or migration
- It is necessary to record the kind of encryption and the access key to allow future use of the object
- Applicable to file and bitstream

1.5.6. inhibitors

inhibitorType

 Inhibitor method employed, e.g. "DES", "password protection"

inhibitorTarget

 The content or function protected, e.g. "function: print"

inhibitorKey

- The decryption key or password
- Needs to meet security requirements

1.5.6. inhibitors

Example:

inhibitors
inhibitorType=DES
inhibitorTarget=all content
inhibitorKey=[DES encryption key]

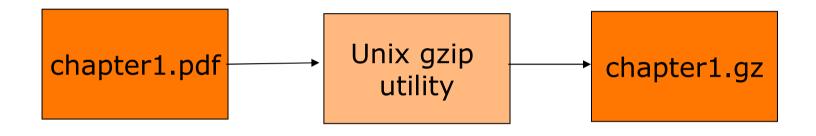
1.5.7. objectCharacteristicsExtension

- Container to include externally defined semantic units – e.g. for more granularity.
- Might contain format specific metadata for a file e.g. technical metadata for still images (MIX)
- Not a replacement for units specified in PREMIS

1.5.1. compositionLevel

DUTI

- An indication of whether the object is subject to one or more processes of decoding or unbundling
- How to describe layers of encodings so they can be correctly reversed
 - Treat each layer as a "composition level"
 - Repeat description of object characteristics for each composition level


1.5.6. compositionLevel

- A file with no compression and no encryption has compositionLevel 0 (zero)
- Each layer of encoding results in new format and incremented compositionLevel
- Only applies if object is encrypted or compressed
- Value is an integer

Files again

- FILE = a named and ordered sequence of bytes that is known by an operating system.
 - chapter1.pdf
 - photo.tiff
 - mapofBerlin.jp2
- Can be zero or more bytes
- Has a file format
- Has access permissions and file system statistics such as size and modification date

But some files aren't that simple

- format = PDF
- size = 500,000
 bytes
- messageDigest = [something]

format = gzip
size = 324,876
bytes
messageDigest = [something else]

1.5.1. compositionLevel

chapter1.pdf				chapter1.pdf.gz			
composition Level			0	composition Level			1
fixity	message Digest Algorithm		SHA-1	fixity	message Digest Algorithm		SHA-1
fixity	message Digest		[big string]	fixity	message Digest		[another string]
fixity	message Digest Originato		Submitter	fixity	message Digest Originator		Repository
size			500000	size			324876
format	format Designa- tion	format Name	PDF	format	format Designa- tion	format Name	gzip
format	format Designa- tion	format Version	1.2	format	format Designa- tion	format Version	1.2.3

1.5.1. compositionLevel

 Remember: Composition level increments only when you have a single file object with multiple successive encodings.

Creation information

- 1.5.5. creatingApplication
 - Container for information about the application and the context in which an object was created
 - creatingApplicationName
 - creatingApplicationVersion
 - dateCreatedByApplication
 - creatingApplicationExtension
 - Part of objectCharacteristics

Creation information

1.6. originalName

- Name of object as submitted to or harvested by repository
- Supplements repository supplied names
- Useful for identification of objects for clients or outside partners
- Applicable to files and representations

1.7. storage

- How and where the object is stored
- Container for contentLocation storageMedium
- May be repeated if more than one identical copies in different locations that are managed together

1.7. storage

contentLocation

- Information needed to retrieve a file from a system or a bitstream from within a file
- Subunits type and value
- Could be fully qualified path or identifier used by storage system; for bitstream a byte offset

storageMedium

- Physical medium on which the object is stored
- Useful for media management (e.g. media migration)
- May be name of system that knows the medium
- Examples: hard disk, TSM

1.7. Example of storage

storage contentLocation contentLocationType=FDA contentLocationValue=fda/prod/data/out/classa/ DF-2005-001002 storageMedium=3590 [a type of tape unit]

1.8. Environment

What is needed to render or use an object

- Operating system
- Application software
- Computing resources
- Why is obligation optional?
 - Need for this information may differ in preservation strategies (e.g., may be unneeded for bit-level preservation)
 - We currently lack practical methods to collect and store this information

1.8. Environment

- Relevance to long-term preservation: Ability to render an object and interact with its content may depend on knowing these technical details
- Applies to all types of object (representation, file, bitstream)

1.8. Environment semantic units

environmentCharacteristic

- Multiple environments can support an object, but often not equally well
- Suggested values: unspecified, known to work, minimum, recommended
- Repository does not need to record all possible environments

1.8. Environment semantic units

environmentPurpose

- Use supported by the specified environment
- Suggested values: render, edit
- example: for x.pdf
 Adobe Acrobat (edit)
 Adobe Reader (render)

1.8. Environment semantic units (cont.)

software and hardware

- identify by name, version, type (broad category)
- Many may apply; at least one should be recorded

dependency

- non-software component or file needed
- dependency vs. swDependency
- e.g. fonts, schemas, stylesheets
- name and identifier

1.8. Environment semantic units (cont.)

environmentNote

- Any additional information
- Should not be used as substitute for more rigorous description

environmentExtension

- Replace or extend PREMIS semantic units
- In an operation environment a link to an appropriate system/emulator can be stored.

1.8. Environment example: ETD (PDF file)

- environmentCharacteristic=known to work
- environmentPurpose=render
- software/swName= Mozilla Firefox
- software/swVersion = 1.5
- software/swType=renderer
- swOtherInformation=requires swDependencies as plug-ins
- software/swDependency = Adobe Acrobat Reader
 7.0
- software/swDependency= RealPlayer 10

1.8. Environment example: ETD (PDF file)

- software/swName= Windows NT
- software/swVersion=5.0 (2000)
- software/swType=operatingSystem
- hardware/hwName=Intel Pentium III
- hardware/hwType=processor
- dependency/dependencyName=Mathematica 5.2 True Type math fonts

1.8. Environment registries

- Information may be complex and increasingly granular
- Information often applies to whole class of objects
- PREMIS does not assume the existence of an environment registry, but defines the information that would be needed in one

D D E M I S PREservation Metadata Implementation Strategies

1.8. Environment registries

- PRONOM has some elements of environment registry
 - for any file extension, gives list of software that can
 - create
 - render
 - identify
 - validate
 - extract metadata from

1.9. Digital signatures

- In a transaction, verifies the identity of the sender and that the file was unchanged in transmission.
- Some archives sign stored objects for verification of authenticity in the future.

1.9. Digital signatures

DUTI

- PREMIS digital signature semantic units are based on W3C's XML Signature Syntax and Processing
 - *de facto* standard for encoding signature information
 - PREMIS adopts structure/semantics where possible
 - Some departures: e.g., PREMIS permits a given signature to be a property of only 1 object.

1.9. signatureInformation Container

- Who signed it?
 - signer (name or pointer to an Agent)
- How was it signed?
 - signatureInformationEncoding (e.g., Base64)
 - signatureMethod (e.g., DSA-SHA1)

1.9. signatureInformation Container

• How can we validate it?

- signatureValidationRules (could be a pointer to documentation for the validation procedure)
- signatureProperties (additional information)
- keyInformation: the signer's public key and other info
 - Type: e.g., DSA, RSA, PGP, etc.
 - Other info: e.g., certificate, revocation list, etc.

• And of course, the signature itself

1.9. signatureInformation example

```
signatureInformation
  signatureInformationEncoding=base64
  signer=Florida Digital Archive
  signatureMethod=RSA-SHA1
  signatureValue=MC0CFFrVLtRlkMc3Daon4BqqnkhCOTFEALE=
  signatureValidationRules=T1=C1
  signatureProperties=2003-03-19T12:25:14-05:00
  keyInformation
      keyType=x509v3-sign-rsa2
      keyValue=<DSAKeyValue>
                keyvalue
                </DSAKeyValue>
```